Skip to main content

Grundlegendes zu Degeneration und Regeneration von Nerven

  • Chapter
  • First Online:
Book cover Nervenchirurgie

Zusammenfassung

Die makro- und mikroskopische Grundstruktur eines Nervs ist schematisch in ◉ Abb. 1.1 dargestellt. Den Aufbau einer einzelnen Nervenfaser gibt ◉ Abb. 1.2 wieder. Bei der Beschreibung von Nervenläsionen spielen folgende strukturelle Einheiten eine wesentliche Rolle:Externes Epineurium Internes Epineurium und Endoneurium Perineurium Nervenfaszikel, die innerhalb des Nervs verlaufen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abercombie M, Jonson M (1942) The outwandering of cells in tissue cultures of nerves undergoing Wallerian degeneration. J Exp Biol 19: 266–283

    Google Scholar 

  • Ageberg E, Björkman A, Rosén B, Lundborg G, Roos EM (2009) Principles of brain plasticity in improving sensorimotor function of the knee and leg in healthy subjects: a double-blind randomized exploratory trial. BMC Musculoskeletal Disorders 10: 99. doi:10.1186/1471-2474-10-99

    Article  PubMed Central  PubMed  Google Scholar 

  • Best TJ, Mackinnon SE (1994) Peripheral nerve revascularisation: a current literature review. J Reconstr Microsurg 10: 193–204

    Article  CAS  PubMed  Google Scholar 

  • Best TJ, Mackinnon SE, Evans PJ, Hunter D, Midha R (1999) Peripheral nerve revascularization: histomorphometric study of small- and large-caliber grafts. J Reconstr Microsurg 15 (3): 183–190. doi:10.1055/s-2007-1000090

    Article  CAS  PubMed  Google Scholar 

  • Björkman A, Weibull A, Rosén B, Svensson J, Lundborg G (2009) Rapid cortical reorganisation and improved sensitivity of the hand following cutaneous anaesthesia of the forearm. Eur J Neurosci 29 (4): 837–844. doi:10.1111/j.1460-9568.2009.06629.x

    Article  PubMed  Google Scholar 

  • Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S, Lacroix S (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 27 (46): 12565–12576

    Article  CAS  PubMed  Google Scholar 

  • Bradley WG, Asbury AK (1970) Duration of synthesis phase in neuilemma cells in mouse sciatic nerve during degeneration. Exp Neurol 26 (2): 275–282

    Article  CAS  PubMed  Google Scholar 

  • Brenner MJ, Dvali L, Hunter DA, Myckatyn TM, Mackinnon SE (2007) Motor neuron regeneration through end-to-side repairs is a function of donor nerve axotomy. Plastic Reconstr Surg 120 (1): 215–223. doi:10.1097/01.prs.0000264094.06272.67

    Article  CAS  Google Scholar 

  • Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22 (15): 6631–6638

    CAS  PubMed  Google Scholar 

  • Brushart TM (2011) Nerve Repair. Oxford University Press

    Google Scholar 

  • Bunge MB, Williams AK, Wood PM (1982) Neuron-Schwann cell interaction in basal lamina formation. Dev Biol 92 (2): 449–660

    Article  CAS  PubMed  Google Scholar 

  • Castejon MS, Culver DG, Glass JD (1999) Generation of spectrin breakdown products in peripheral nerves by addition of M-calpain. Muscle Nerve 22:905–909

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY (1993) Channel function in mammalian axons and support cells. In: Dyck PJ, Thomas PK (eds.) Peripheral Neuropathy, Vol. 3. Philadelphia: Saunders, pp. 94–108

    Google Scholar 

  • Clark MB, Bunge MB. (1989) Cultured Schwann cells assemble normal-appearing basal lamina only when they ensheathe axons. Dev Biol 133 (2): 393–404

    Article  CAS  PubMed  Google Scholar 

  • Clarke E, Bearn JG (1972) The spiral bands of Fontana. Brain 95: 1–20

    Article  CAS  PubMed  Google Scholar 

  • Court FA, Wrabetz L, Feltri ML (2006) Basal lamina: Schwann cells wrap to the rhythm of space-time. Curr Opin Neurobiol 16: 501–507

    Article  CAS  PubMed  Google Scholar 

  • Dahlin L, Johansson F, Lindwall C, Kanje M (2009) Chapter 28: Future perspective in peripheral nerve reconstruction. Int Rev Neurobiol 87: 507–530

    Article  CAS  PubMed  Google Scholar 

  • de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68: 451–463

    Article  CAS  PubMed  Google Scholar 

  • Dreesmann L (2007) Zelluläre Mechanismen beim Neuro Tissue Engineering. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Fakultät für Naturwissenschaften Universität Hohenheim, Institut für Zoologie

    Google Scholar 

  • el-Barrany WG, Marei AG, Vallée B (1999) Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves. Surg Radiol Anatomy 21 (2): 95–102. doi:10.1007/s00276-999-0095-9

    Article  CAS  Google Scholar 

  • Fugleholm K, Schmalbruch H, Krarup C (1994) Early peripheral nerve regeneration after crushing, sectioning, and freeze studied by implanted electrodes in the cat. J Neurosci 14: 2659–2673

    CAS  PubMed  Google Scholar 

  • George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15: 6445–6452

    CAS  PubMed  Google Scholar 

  • Goldberg JL, Barres (2000) The relationship between neuronalö survival and regeneration. Annu Rev Neurosci 23: 579–612

    Article  CAS  PubMed  Google Scholar 

  • Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52: 553–560

    Article  CAS  PubMed  Google Scholar 

  • Grothe C, Meisinger C, Hertenstein A, Kurz H, Wewetzer K (1997) Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 76: 123–135

    Article  CAS  PubMed  Google Scholar 

  • Guntinas-Lichius O, Angelov DN, Morellini F, Lenzen M, Skouras E, Schachner M, Irintchev A (2005) Opposite impacts of tenascin-C and tenascin-R deficiency in mice on the functional outcome of facial nerve repair. Eur J Neurosci 22: 2171–2179

    Article  PubMed  Google Scholar 

  • Haninec P (1986) Undulating course of nerve fibres and bands of Fontana in peripheral nerves of the rat. Anatomy and Embryology 174 (3): 407–411

    Article  CAS  PubMed  Google Scholar 

  • Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 84 : 8735–8739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Höke A, Gordon T, Zochodne DW, Sulaiman OA (2002) A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol 173: 77–85

    Article  PubMed  Google Scholar 

  • Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288: 61–75

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6: 671–682

    Article  CAS  PubMed  Google Scholar 

  • Karanth S, Yang G, Yeh J, Richardson PM (2006) Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol 202: 161–166

    Article  CAS  PubMed  Google Scholar 

  • Kozu H, Tamura E, Parry GJ (1992) Endoneurial blood supply to peripheral nerves is not uniform. J Neurol Sci 111: 204–208

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8: 243–252

    CAS  PubMed  Google Scholar 

  • Li H, Terenghi G, Hall SM (1997) Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20: 333–347

    Article  CAS  PubMed  Google Scholar 

  • Lietz M, Dreesmann L, Hoss M et al. (2006) Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27: 1425–1436

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G (1988) Vascular systems. Nerve Injury and Repair. London: Churchill Livingstone, pp. 42–46

    Google Scholar 

  • Lundborg G (2000) Brain plasticity and hand surgery: an overview. J Hand Surg Br 25: 242–252

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G (2003) Richard P. Bunge memorial lecture. Nerve injury and repair – a challenge to the plastic brain. Journal of the Peripheral Nervous System : J Peripher Nerv Syst 8: 209–226

    Article  PubMed  Google Scholar 

  • Lundborg G, Rosen B (2007) Hand function after nerve repair. Acta Physiologica (Oxford, England) 189 (2): 207–217. doi:10.1111/j.1748-1716.2006.01653.x

    Article  CAS  PubMed  Google Scholar 

  • Lundborg G, Rydevik B (1973) Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg (Brit.) 55 (2): 390–401

    CAS  Google Scholar 

  • Ma J, Novikov LN, Wiberg M, Kellerth JO (2001) Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res 139: 216–223

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Novikov LN, Kellerth JO, Wiberg M (2003) Early nerve repair after injury to the postganglionic plexus: an experimental study of sensory and motor neuronal survival in adult rats. Scand J Plast Reconstr Surg Hand Surg 37: 1–9

    Article  PubMed  Google Scholar 

  • Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando F, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4: 1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Makwana M, Raivich G (2005) Molecular mechanisms in successful peripheral regeneration. FEBS J 272: 2628–2638

    Article  CAS  PubMed  Google Scholar 

  • McKay Hart A, Brannstrom T, Wiberg M, Terenghi G (2002) Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res 142: 308–318

    Article  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8 (1): 33–55

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119: 45–54

    Article  CAS  PubMed  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B et al. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304: 700–703

    Article  CAS  PubMed  Google Scholar 

  • Midha R (2008) Mechanisms and Pathology of Injury. In: Kim DH, Midha R, Murovic JA (eds.) Kline & Hudson’s Nerve Injuries: Operative Results for Major Nerve Injuries, Entrapments, and Tumors, 2nd ed. Philadelphia: Saunders

    Google Scholar 

  • Millesi H, Rath T, Reihsner R, Zoch G (1993) Microsurgical neurolysis: its anatomical and physiological basis and its classification. Microsurgery 14 (7): 430–439

    Article  CAS  PubMed  Google Scholar 

  • Millesi H, Zoch G, Rath T (1990) The gliding apparatus of peripheral nerve and its clinical significance. Annales De Chirurgie De La Main Et Du Membre Supérieur 9 (2): 87–97

    Article  CAS  PubMed  Google Scholar 

  • Moldovan M, Sørensen J, Krarup C (2006) Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve. Brain 129: 2471–2483

    Article  PubMed  Google Scholar 

  • Noble J, Munro CA, Prasad VS, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45: 116–122

    Article  CAS  PubMed  Google Scholar 

  • Novikov L, Novikova L, Kellerth JO (1997) Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79: 765–774

    Article  CAS  PubMed  Google Scholar 

  • Olawale AR, Sulaiman AR, Gordon T (2000) Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination and size. Glia 32: 234–246

    Article  Google Scholar 

  • Pannucci C, Myckatyn TM, Mackinnon SE, Hayashi A (2007) End-to-side nerve repair: review of the literature. Restor Neurol Neurosci 25 (1): 45–63

    PubMed  Google Scholar 

  • Penkert G, Bini W, Samii M (1988) Revascularization of nerve grafts: an experimental study. J Reconstructive Microsurg 4 (4): 319–325. doi:10.1055/s-2007-1006938

    Article  CAS  Google Scholar 

  • Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165: 1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Prpa B, Huddleston PM, An K-N, Wood MB (2002) Revascularization of nerve grafts: a qualitative and quantitative study of the soft-tissue bed contributions to blood flow in canine nerve grafts. J Hand Surg 27 (6): 1041–1047. doi:10.1053/jhsu.2002.36996

    Article  Google Scholar 

  • Richter HP (1982) Impairment of motor recovery after late nerve suture: experimental study in the rabbit. Part 1: functional and electromyographic findings. Neurosurgery 10 (1): 70–74

    Article  CAS  PubMed  Google Scholar 

  • Richter HP, Kettelsen UP (1982) Impairment of motor recovery after late nerve suture: experimental study in the rabbit. Part 2: morphological findings. Neurosurgery 10 (1): 75–85

    Article  Google Scholar 

  • Richardson PM, Miao T, Wu D, Zhang Y, Yeh J, Bo X (2009) Responses of the nerve cell body to axotomy. Neurosurgery 65: A74–79

    Article  Google Scholar 

  • Rosén B, Björkman A, Weibull A, Svensson J, Lundborg G (2009) Improved sensibility of the foot after temporary cutaneous anesthesia of the lower leg. Neuroreport 20 (1): 37–41. doi:10.1097/WNR.0b013e32831b4486

    Article  PubMed  Google Scholar 

  • Sahin C, Karagoz H, Yuksel F, Kulahci Y, Akakin D, Dagbasi N et al. (2012) The effect of perineurotomy on nerve regeneration in diabetic rats. Plastic Reconstr Surg 130 (5): 651e–661e. doi:10.1097/PRS.0b013e318267d3bd

    Google Scholar 

  • Saxena S, Caroni P (2007) Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83: 174–191

    Article  CAS  PubMed  Google Scholar 

  • Scherer SS, Arroyo EJ (2002) Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst 7 (1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22: 3052–3060

    CAS  PubMed  Google Scholar 

  • Shanthaveerappa TR, Bourne GH (1966) Perineural epithelium: a new concept of its role in the integrity of the peripheral nervous system. Science 154 (3755): 1464–1467

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov V, Popkov A, Popkov D, Prévot J (2001) Reduction of the period of treatment for leg lengthening. Technique and advantages. Revue De Chirurgie Orthopédique Et Réparatrice De L’appareil Moteur 87 (3): 248–256

    Google Scholar 

  • Siironen J, Vuorio E, Sandberg M, Röyttä M (1996) Expression of type I and III collagen and laminin beta1 after rat sciatic nerve crush injury. J Peripher Nerv Syst 1: 209–221

    CAS  PubMed  Google Scholar 

  • Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW, Nave KA (2013) A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 16: 48–54

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Myers RR (2002) Degeneration and regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst 7: 13–27

    Article  PubMed  Google Scholar 

  • Sugimoto Y, Takayama S, Horiuchi Y, Toyama Y (2002) An experimental study on the perineurial window. J Peripher Nerv Syst 7 (2): 104–111

    Article  PubMed  Google Scholar 

  • Sulaiman OA, Gordon T (2000) Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia 32: 234–246

    Article  CAS  PubMed  Google Scholar 

  • Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain Res 74: 491–516

    CAS  Google Scholar 

  • Sunderland S (1978) Nerve and Nerve Injuries, 2nd ed. Edinburgh: Churchill Livingstone, pp. 31–60

    Google Scholar 

  • Sunderland S (1991) Nerve Injuries and Their Repair: A Critical Appraisal. New York: Churchill Livingstone

    Google Scholar 

  • Sunderland IR, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE (2004) Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg 53: 382–387

    Article  PubMed  Google Scholar 

  • Tannemaat MR, Korecka J, Ehlert EM, Mason MR, van Duinen SG, Boer GJ, Malessy MJ, Verhaagen J (2007) Human neuroma contains increased levels of semaphorin 3A, which surrounds nerve fibers and reduces neurite extension in vitro. Neurosci 27: 14260–14264

    Article  CAS  Google Scholar 

  • Terenghi G, Calder JS, Birch R, Hall SM (1998) A morphological study of Schwann cells and axonal regeneration in chronically transected human peripheral nerves. J Hand Surg Br 23: 583–587

    Article  CAS  PubMed  Google Scholar 

  • Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194: 1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson DM, Buettner HM (2004) Oriented Schwann cell monolayers for directed neurite outgrowth. Ann Biomed Eng 32: 1120–1130

    Article  PubMed  Google Scholar 

  • Thompson DM, Buettner HM (2006) Neurite outgrowth is directed by schwann cell alignment in the absence of other guidance cues. Ann Biomed Eng 34: 161–168

    Article  PubMed  Google Scholar 

  • Tillett RL, Afoke A, Hall SM, Brown RA, Phillips JB (2004) Investigating mechanical behaviour at a core-sheath interface in peripheral nerve. Journal of the Peripheral Nervous System : J Peripher Nerv Syst 9 (4): 255–262. doi:10.1111/j.1085-9489.2004.09411.x

    Article  PubMed  Google Scholar 

  • Ushiki T, Ide C (1990) Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res 260: 175–184

    Article  CAS  PubMed  Google Scholar 

  • Wall PD (1979) Three phases of evil: the relation of injury to pain. Ciba Found Symp 69: 293–304

    PubMed  Google Scholar 

  • Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of the primitive fibres. Philos Trans R Soc Lond 140: 423–429

    Article  Google Scholar 

  • Wanner IB, Wood PM (2002) N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J Neurosci 22: 4066–4079

    CAS  PubMed  Google Scholar 

  • West CA, Davies KA, Hart AM et al. (2007) Volumetric magnetic resonance imaging of dorsal root ganglia for the objective quantitative assessment of neuron death after peripheral nerve injury. Exp Neurol 203: 22–33

    Article  PubMed  Google Scholar 

  • Wilgis EF, Murphy R (1986) The significance of longitudinal excursion in peripheral nerves. Hand Clinics 2 (4): 761–766

    CAS  PubMed  Google Scholar 

  • Windebank A, McDonald E (2005) Neurotrophic factors in the peripheral nervous system. In: Dyck P, Thomas P (eds.) Peripheral Neuropathy, 4th ed. Philadelphia: Saunders, pp. 377–386

    Chapter  Google Scholar 

  • Witzel C, Rohde C, Brushart TM (2005) Pathway sampling by regenerating peripheral axons. J Comp Neurol 485: 183–190

    Article  PubMed  Google Scholar 

  • Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D, Gradus T, Vuppalanchi D, Segal-Ruder Y, Ben-Yaakov K, Hieda M, Yoneda Y, Twiss JL, Fainzilber M (2008) Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59: 241–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brook, G., Hodde, D., Kretschmer, T. (2014). Grundlegendes zu Degeneration und Regeneration von Nerven. In: Kretschmer, T., Antoniadis, G., Assmus, H. (eds) Nervenchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36895-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36895-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36894-3

  • Online ISBN: 978-3-642-36895-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics