Skip to main content
  • 2320 Accesses

Abstract

First we perform a symmetry analysis on the KdV equation, and obtain the traveling-wave solutions in terms of the functions ℘(z),tan2 z,coth2 z, and \(\operatorname{cn}^{2}(z\mid m)\), respectively. The two-soliton solution is also determined via the Hirota bilinear presentation. The KP equation is an extension of the KdV equation. We use symmetry transformations to extend the solutions of the KdV equation to the more sophisticated solutions of the KP equation. Then we solve the KP equation for solutions that are polynomial in a spatial variable, and obtain another type of solution. We also find the Hirota bilinear presentation of the KP equation and obtain the “lump” solution. Using the stable range of the nonlinear term, symmetry transformations, and the generalized power series method, we find a family of singular solutions with seven arbitrary parameter functions of t and a family of analytic solutions with six arbitrary parameter functions of t for the equation of transonic gas flows. Similar solutions are also obtained for the short-wave equation and the Khokhlov–Zabolotskaya equation in nonlinear acoustics of bounded bundles. The symmetry transformations and two new families of exact solutions with multiple parameter functions for the geopotential equation are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Math. Soc Lect. Notes, vol. 149. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  • Bagdoev, A.G., Petrosyan, L.G.: Justification of the applicability of short wave equations in obtaining an equation for modulation of a gas–fluid mixture. Izv. Akad. Nauk Armyan. SSR Ser. Mekh. 38(4), 58–66 (1985)

    MathSciNet  MATH  Google Scholar 

  • Cao, B.: Solutions of Jimbo–Miwa equation and Konopelchenko–Dubrovsky equations. Acta Appl. Math. 112, 181–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ermakov, S.: Short wave/long wave interaction and amplification of decimeter-scale wind waves in film slicks. Geophys. Res. Abstr. 8, 00469 (2006)

    Google Scholar 

  • Gibbons, J.: The Khokhlov–Zabolotskaya equation and the inverse scattering problem of classical mechanics. In: Dynamical Problems in Soliton Systems, Kyoto, 1984, pp. 36–41. Springer, Berlin (1985)

    Chapter  Google Scholar 

  • Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  • Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Kadomitsev, B.B., Petviashvili, V.I.: On the stability of solitary waves weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  • Katkov, V.I.: One class of exact solutions of the geopotential forecast equation. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1, 1088 (1965)

    MathSciNet  Google Scholar 

  • Katkov, V.I.: Exact solutions of the geopotential forecast equation. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2, 1193 (1966)

    Google Scholar 

  • Khamitova, R.S.: Group structure and a basis of conservation laws. Teor. Mat. Fiz. 52(2), 244 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Khokhlov, R.V., Zabolotskaya, E.A.: Quasi-plane waves in nonlinear acoustics of bounded bundles. Akust. Zh. 15(1), 40 (1969)

    Google Scholar 

  • Khristianovich, S.A., Razhov, O.S.: On nonlinear reflection of weak shock waves. Prikl. Mat. Meh. 22(5), 586 (1958)

    Google Scholar 

  • Kibel’, T.W.: Introduction to Hydrodynamical Methods of Short Term Weather Forecast. Gosteoretizdat, Moscow (1954)

    Google Scholar 

  • Kocdryavtsev, A., Sapozhnikov, V.: Symmetries of the generalized Khokhlov–Zabolotskaya equation. Acoust. Phys. 4, 541–546 (1998)

    Google Scholar 

  • Korsunskii, S.V.: Self-similar solutions of two-dimensional equations of Khokhlov–Zabolotskaya type. Mat. Fiz. Nelinein. Mekh. 16, 81–87 (1991)

    MathSciNet  Google Scholar 

  • Kostin, I., Panasenko, G.: Khokhlov–Zabolotskaya–Kuzentsov-type equation: nonlinear acoustics in heterogeneous media. SIMA J. Math. 40, 699–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kraenkel, R., Manna, M., Merle, V.: Nonlinear short-wave propagation in ferrites. Phys. Rev. E 61, 976–979 (2000)

    Article  Google Scholar 

  • Kucharczyk, P.: Group properties of the “short waves” equations in gas dynamics. Bull. Acad. Pol. Sci., Sér. Sci. Tech. XIII(5), 469 (1965)

    Google Scholar 

  • Kupershmidt, B.A.: Geometric-Hamiltonian Forms for the Kadomtsev and Petviashvili and Khokhlov–Zabolotskaya Equations. In: Geometry in Partial Differential Equations, pp. 155–172. World Scientific, River Edge (1994)

    Chapter  Google Scholar 

  • Lin, J., Zhang, J.: Similarity reductions for the Khokhlov–Zabolotskaya equation. Commun. Theor. Phys. 24(1), 69–74 (1995)

    MathSciNet  Google Scholar 

  • Lin, C.C., Reissner, E., Tsien, H.S.: On two-dimensional non-steady motion of a slender body in a compressible fluid. J. Math. Phys. 27(3), 220 (1948)

    MathSciNet  MATH  Google Scholar 

  • Mamontov, E.V.: On the theory of nonstationary transonic flows. Dokl. Akad. Nauk SSSR 185(3), 538 (1969)

    Google Scholar 

  • Mamontov, E.V.: Analytic perturbations in a nonstationary transonic stream. Dinamika Splosh. Sredy 10, 217–222 (1972)

    MathSciNet  Google Scholar 

  • Morozov, O.: Cartan’s structure theory of symmetry pseudo-groups for the Khokhlov–Zabolotskaya equation. Acta Appl. Math. 101, 231–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Roy, C., Nasker, M.: Towards the conservation laws and Lie symmetries for the Khokhlov–Zabolotskaya equation in three dimensions. J. Phys. A 19(10), 1775–1781 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Roy, S., Roy, C., De, M.: Loop algebra of Lie symmetries for a short-wave equation. Int. J. Theor. Phys. 27(1), 47–55 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Rozanova, A.: The Khokhlov–Zabolotskaya–Kuznetsov equation. Math. Acad. Sci. Paris 344, 337–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Rozanova, A.: Qualitative analysis of the Khokhlov–Zabolotskaya equation. Math. Models Methods Appl. Sci. 18, 781–812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez, D.: Long waves in ferromagnetic media, Khokhlov–Zabolotskaya equation. J. Differ. Equ. 210, 263–289 (2005)

    Article  MATH  Google Scholar 

  • Schwarz, F.: Symmetries of the Khokhlov–Zabolotskaya equation. J. Phys. A 20(6), 1613 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Sevost’janov, G.D.: An equation for nonstationary transonic flows of an ideal gas. Izv. Akad. Nauk SSSR Mekh. Zidk. Gaza 1, 105–109 (1977)

    MathSciNet  Google Scholar 

  • Sukhinin, S.V.: Group property and conservation laws of the equation of transonic motion of gas. Dinamika Splosh. Sredi 36, 130 (1978)

    MathSciNet  Google Scholar 

  • Syono, S.: Various simple solutions of the barotropic vorticity equation. In: Vortex, Collected Papers of the Numerical Weather Prediction Group in Tokyo, vol. 3 (1958)

    Google Scholar 

  • Vinogradov, A.M., Vorob’ev, E.M.: Application of symmetries for finding of exact solutions of Khokhlov–Zabolotskaya equation. Akust. Zh. 22(1), 22 (1976)

    Google Scholar 

  • Xu, X.: Stable-range approach to the equation of nonstationary transonic gas flows. Q. Appl. Math. 65, 529–547 (2007a)

    MATH  Google Scholar 

  • Xu, X.: Stable-Range approach to short wave and Khokhlov–Zabolotskaya equations. Acta Appl. Math. 106, 433–454 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, X. (2013). Nonlinear Scalar Equations. In: Algebraic Approaches to Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36874-5_5

Download citation

Publish with us

Policies and ethics