Skip to main content

Nucleic Acid Nanotechnology: Modified Backbones and Topological Polymer Templates

  • 1962 Accesses

Part of the RNA Technologies book series (RNATECHN)

Abstract

DNA-based nanotechnology has revolutionized the construction of nanoscale objects and devices—primarily by using Watson–Crick base-pairing to program the self-assembly (and reaction pathways) of DNA oligomers into branched structures. However, Watson–Crick-controlled self-assembly is not limited to the use of the “natural” d-(deoxy)ribose phosphodiester backbone.

This chapter describes nanoscale objects synthesized from oligomers containing sugars other than d-deoxyribose or linkages other than phosphodiester linkages. This chapter also focuses on using the backbone of DNA as a topological guide for polymer synthesis.

As these chemical modifications profoundly affect the bioavailability, nuclease resistance, protein binding, optoelectronic, and materials properties of nano-objects compared to their “natural” DNA counterparts, they may find great utility in biomedicine.

Keywords

  • DNA
  • Polynucleotides
  • Templated syntheses
  • Backbones
  • Nylon
  • Conducting polymers
  • Nanotechnology
  • DNA nanotechnology
  • DNA-based nanotechnology
  • Junctions
  • l-DNA
  • PNA
  • LNA
  • GNA
  • Methylphosphonate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36853-0_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36853-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Barton JK, Olmon ED, Sontz PA (2011) Metal complexes for DNA-mediated charge transport. Coord Chem Rev 255:619–634

    PubMed  CrossRef  CAS  Google Scholar 

  • Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhatia D, Surana S, Chakraborty S et al (2011) A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat Commun 2:339

    PubMed  CrossRef  Google Scholar 

  • Brudno Y, Liu DR (2009) Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem Biol 16:265–276

    PubMed  CrossRef  CAS  Google Scholar 

  • Caminade AM, Turrin CO, Majoral JP (2008) Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chemistry 14:7422–7432

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen W, Schuster GB (2012) DNA-programmed modular assembly of cyclic and linear nanoarrays for the synthesis of two-dimensional conducting polymers. J Am Chem Soc 134:840–843

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen W, Guler G, Kuruvilla E et al (2010) Development of self-organizing, self-directing molecular nanowires: synthesis and characterization of conjoined DNA-2,5-bis (2-thienyl)pyrrole oligomers. Macromolecules 43:4032–4404

    CrossRef  CAS  Google Scholar 

  • Ciengshin T, Sha R, Seeman NC (2011) Automatic molecular weaving prototyped by using single-stranded DNA. Angew Chem Int Ed 50:4419–4422

    CrossRef  CAS  Google Scholar 

  • Clever GH, Shionoya M (2010) Metal-base pairing in DNA. Coord Chem Rev 254:2391–2402

    CrossRef  CAS  Google Scholar 

  • Corradini R, Sforza S, Tedeschi T et al (2011) Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges. Curr Top Med Chem 11:1535–1554

    PubMed  CrossRef  CAS  Google Scholar 

  • Cronican JJ, Thompson DB, Beier KT et al (2010) Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol 5:747–752

    PubMed  CrossRef  CAS  Google Scholar 

  • Datta B, Schuster GB (2008) DNA-directed synthesis of aniline and 4-aminobiphenyl, oligomers: programmed transfer of sequence information to a conjoined polymer nanowire. J Am Chem Soc 130:2965–2973

    PubMed  CrossRef  CAS  Google Scholar 

  • Datta B, Schuster GB, McCook A et al (2006) DNA-directed assembly of polyanilines: modified cytosine nucleotides transfer sequence programmability to a conjoined polymer. J Am Chem Soc 128:14428–14429

    PubMed  CrossRef  CAS  Google Scholar 

  • Dobrowolski JC (2003) DNA knots and links. Polimery 48:3–15

    CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Diekmann S et al (1988) The structure of the holliday junction, and its resolution. Cell 55:79–89

    PubMed  CrossRef  CAS  Google Scholar 

  • El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405

    PubMed  CrossRef  CAS  Google Scholar 

  • Eschenmoser A (2011) Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew Chem Int Ed 50:12412–12472

    CrossRef  CAS  Google Scholar 

  • Fox KR, Brown T (2005) An extra dimension in nucleic acid sequence recognition. Q Rev Biophys 38:311–320

    PubMed  CrossRef  CAS  Google Scholar 

  • Geerts N, Eiser E (2010) DNA-functionalized colloids: physical properties and applications. Soft Matter 6:4647–4660

    CrossRef  CAS  Google Scholar 

  • Gu Q, Cheng CD, Gonela R et al (2006) DNA nanowire fabrication. Nanotechnology 17:R14–R25

    CrossRef  CAS  Google Scholar 

  • Houlton A, Pike AR, Galindo MA et al (2009) DNA-based routes to semiconducting nanomaterials. Chem Commun 14:1797–1806

    CrossRef  Google Scholar 

  • Jones MR, Osberg KD, Macfarlane RJ et al (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827

    PubMed  CrossRef  CAS  Google Scholar 

  • Kallenbach NR, Ma RI, Seeman NC (1983) An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305:829–831

    CrossRef  CAS  Google Scholar 

  • Ke Y, Bellot G, Voigt NV et al (2012) Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3:2587–2597

    CrossRef  CAS  Google Scholar 

  • Keum JW, Ahn JH, Bermudez H (2011) Design, assembly, and activity of antisense DNA nanostructures. Small 7:3529–3535

    PubMed  CrossRef  CAS  Google Scholar 

  • Kleiner RE, Dumelin CE, Liu DR (2011) Small-molecule discovery from DNA-encoded chemical libraries. Chem Soc Rev 40:5707–5717

    PubMed  CrossRef  CAS  Google Scholar 

  • Li XJ, Yang XP, Qi J et al (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 118:6131–6140

    CrossRef  CAS  Google Scholar 

  • Lin CX, Ke YG, Li Z et al (2009) Mirror image DNA nanostructures for chiral supramolecular assemblies. Nano Lett 9:433–436

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu J, Declais AC, Lilley DMJ (2004) Electrostatic interactions and the folding of the four-way DNA junction: analysis by selective methyl phosphonate substitution. J Mol Biol 343:851–864

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu J, Declais AC, McKinney SA et al (2005) Stereospecific effects determine the structure of a four-way DNA junction. Chem Biol 12:217–228

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu Y, Wang RS, Ding L et al (2008) Thermodynamic analysis of nylon nucleic acids. Chembiochem 9:1641–1648

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu Y, Wang R, Ding L et al (2012) Templated synthesis of nylon nucleic acids and characterization by nuclease digestion. Chem Sci 3:1930–1937

    PubMed  CrossRef  Google Scholar 

  • Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505

    PubMed  CrossRef  CAS  Google Scholar 

  • Lukeman PS, Mittal AC, Seeman NC (2004) Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. Chem Commun (Camb) 15:1694–1695

    CrossRef  Google Scholar 

  • Ma Y, Zhang J, Zhang G et al (2004) Polyaniline nanowires on si surfaces fabricated with DNA templates. J Am Chem Soc 126:7097–7101

    PubMed  CrossRef  CAS  Google Scholar 

  • Mei QA, Wei XX, Su FY et al (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    PubMed  CrossRef  CAS  Google Scholar 

  • Milnes PJ, McKee ML, Bath J et al (2012) Sequence-specific synthesis of macromolecules using DNA-templated chemistry. Chem Commun 48:5614–5616

    CrossRef  CAS  Google Scholar 

  • Mukherjee A, Vasquez KM (2011) Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 93:1197–1208

    PubMed  CrossRef  CAS  Google Scholar 

  • Nielsen PE (2010) Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 7:786–804

    PubMed  CrossRef  CAS  Google Scholar 

  • Pinheiro AV, Han DR, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    PubMed  CrossRef  CAS  Google Scholar 

  • Rajendran A, Endo M, Katsuda Y et al (2011) Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 133:14488–14491

    PubMed  CrossRef  CAS  Google Scholar 

  • Rinker S, Liu Y, Yan H (2006) Two-dimensional LNA/DNA arrays: estimating the helicity of LNA/DNA hybrid duplex. Chem Commun 25:2675–2677

    CrossRef  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    PubMed  CrossRef  CAS  Google Scholar 

  • Ruiz-Carretero A, Janssen PGA, Kaeser A et al (2011) DNA-templated assembly of dyes and extended pi-conjugated systems. Chem Commun 47:4340–4347

    CrossRef  CAS  Google Scholar 

  • Sacca B, Niemeyer CM (2011) Functionalization of DNA nanostructures with proteins. Chem Soc Rev 40:5910–5921

    PubMed  CrossRef  CAS  Google Scholar 

  • Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51:58–66

    CrossRef  CAS  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    PubMed  CrossRef  CAS  Google Scholar 

  • Seeman NC (2000) In the nick of space: generalized nucleic acid complementarity and DNA nanotechnology. Synlett 11:1536–1548

    Google Scholar 

  • Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    PubMed  CrossRef  CAS  Google Scholar 

  • Srinivasan S, Schuster GB (2008) A conjoined thienopyrrole oligomer formed by using DNA as a molecular guide. Org Lett 10:3657–3660

    PubMed  CrossRef  CAS  Google Scholar 

  • Surana S, Bhat JM, Koushika SP et al (2011) An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2:340

    PubMed  CrossRef  Google Scholar 

  • Tagawa M, Shohda K, Fujimoto K et al (2011) Stabilization of DNA nanostructures by photo-cross-linking. Soft Matter 7:10931–10934

    CrossRef  CAS  Google Scholar 

  • Totsingan F, Jain V, Bracken WC et al (2010) Conformational heterogeneity in PNA: PNA duplexes. Macromolecules 43:2692–2703

    CrossRef  CAS  Google Scholar 

  • Walsh AS, Yin HF, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    PubMed  CrossRef  CAS  Google Scholar 

  • Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    PubMed  CrossRef  CAS  Google Scholar 

  • Winfree E, Liu F, Wenzler LA et al (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    PubMed  CrossRef  CAS  Google Scholar 

  • Wojciechowski F, Leumann CJ (2011) Alternative DNA base-pairs: from efforts to expand the genetic code to potential material applications. Chem Soc Rev 40:5669–5679

    PubMed  CrossRef  CAS  Google Scholar 

  • Yamamoto T, Nakatani M, Narukawa K et al (2011) Antisense drug discovery and development. Future Med Chem 3:339–365

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang H, Metera KL, Sleiman HF (2010) DNA modified with metal complexes: applications in the construction of higher order metal-DNA nanostructures. Coord Chem Rev 254:2403–2415

    CrossRef  CAS  Google Scholar 

  • Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhang RS, McCullum EO, Chaput JC (2008) Synthesis of two mirror image 4-helix junctions derived from glycerol nucleic acid. J Am Chem Soc 130:5846–5847

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhu L, Lukeman PS, Canary JW et al (2003) Nylon/DNA: single-stranded DNA with a covalently stitched nylon lining. J Am Chem Soc 125:10178–10179

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lukeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lukeman, P. (2013). Nucleic Acid Nanotechnology: Modified Backbones and Topological Polymer Templates. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_9

Download citation