Skip to main content

Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery

  • Chapter
  • First Online:
DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases

Part of the book series: RNA Technologies ((RNATECHN))

  • 2074 Accesses

Abstract

With the advancements in proteomics, it is now known that molecular abnormalities found in cancerous cells stem mostly from the proteins involved in signaling pathways including growth factors, receptors, intracellular mediators, and transcription factors. These proteins or molecular determinants can be used as potential “targets” or “biomarkers” for cancer diagnosis and treatments. Affinity devices using nucleic acids are getting growing attention due to their superior selectivity, ease in replicability, and much better stability in diverse condition. Molecules like aptamers can form suitable secondary/tertiary structures that can bind to specific biological molecules. These properties of aptamers, or in general nucleic acids, to form secondary structures are utilized to create novel biomedical tools for pathological applications as well as in drug delivery approaches. This chapter focuses on the use of DNA and RNA molecules as nanomechanical devices, and their abilities to transform into numerous structural conformations like nanogrids, cages, tiles, etc. The selective hybridization of nucleic acids to make 2D and 3D constructs for detection and treatment of cancer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Kelley JM, Gocayne JD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799

    Article  PubMed  CAS  Google Scholar 

  • Alivisatos AP, Johnsson KP, Peng X, et al (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    Google Scholar 

  • Andersen FF, Knudsen B, Oliveira CL et al (2008) Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  PubMed  CAS  Google Scholar 

  • Becker FF, Wang XB, Huang Y et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci USA 92:860–864

    Article  PubMed  CAS  Google Scholar 

  • Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Brown OP (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  Google Scholar 

  • Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 17:422–430

    Article  PubMed  CAS  Google Scholar 

  • Bunka DHJ, Stockley PG (2006) Aptamers come of age-at last. Nat Rev Microbiol 4:588–596

    Article  PubMed  CAS  Google Scholar 

  • Burge S, Parkinson GN, Hazel P et al (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  PubMed  CAS  Google Scholar 

  • Choi SW, Makita N, Inoue S et al (2007) Cationic comb-type copolymers for boosting DNA-fueled nanomachines. Nano Lett 7:172–178

    Article  PubMed  CAS  Google Scholar 

  • Chow KF, Mavre F, Crooks RM et al (2008) Wireless electrochemical DNA microarray sensor. J Am Chem Soc 130:7544–7545

    Article  PubMed  CAS  Google Scholar 

  • Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867–5892

    Article  PubMed  CAS  Google Scholar 

  • DeRisi J, Penland L, Brown PO et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457–460

    Article  PubMed  CAS  Google Scholar 

  • Doktycz MJ (2002) Nucleic acids: thermal stability and denaturation. In: Encyclopedia of life science. Wiley, Chichester. http://www.els.net. doi:10.1038/npg.els.0003123, ISBN: 9780470015902, p 1–7

  • Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  • Garibotti AV, Pérez-Rentero S, Eritja R et al (2011) Functionalization and self-assembly of DNA bidimensional arrays. Int J Mol Sci 12:5641–5651

    Article  PubMed  CAS  Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23: 1973

    Article  PubMed  CAS  Google Scholar 

  • Goodman CM, Choi S, Shandler S et al (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3:252–262

    Article  PubMed  CAS  Google Scholar 

  • Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Leszczynski J, Bansal M (1999) A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study. Chem Phys Lett 311:209–214

    Article  CAS  Google Scholar 

  • He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    Article  PubMed  CAS  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    Article  PubMed  CAS  Google Scholar 

  • Iqbal SM, Bashir R (2009) Nanoelectronic-based detection for biology and medicine. In: Nof S (ed) Springer handbook of automation. Springer, Berlin, pp 1433–1449

    Chapter  Google Scholar 

  • Iqbal SM, Balasundaram G, Ghos S et al (2005) Direct current electrical characterization of ds-DNA in nanogap junctions. Appl Phys Lett 86:153901

    Article  Google Scholar 

  • Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543

    Article  PubMed  CAS  Google Scholar 

  • Jepsen JS, Sørensen MD, Wengel J (2004) Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14:130–146

    Article  PubMed  CAS  Google Scholar 

  • Jonoska N, Twarock R (2008) Blueprints for dodecahedral DNA cages. J Phys A Math Theor 41:304043

    Article  Google Scholar 

  • Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Sharma J, Liu M et al (2009) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9:2445–2447

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Bellot G, Voigt NV et al (2012) Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3:2587–2597

    Article  CAS  Google Scholar 

  • Koshkin AA, Rajwanshi VK, Wengel J (1998a) Novel convenient syntheses of LNA [2.2. 1] bicyclo nucleosides. Tetrahedron Lett 39:4381–4384

    Article  CAS  Google Scholar 

  • Koshkin AA, Singh SK, Nielsen P et al (1998b) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54: 3607–3630

    Article  CAS  Google Scholar 

  • Kronz JD, Westra WH, Epstein JI (1999) Mandatory second opinion surgical pathology at a large referral hospital. Cancer 86:2426–2435

    Article  PubMed  CAS  Google Scholar 

  • Kuzuya A, Komiyama M (2009) Design and construction of a box-shaped 3D-DNA origami. Chem Commun (Camb) 28:4182–4184

    Article  Google Scholar 

  • Kuzuya A, Kimura M, Numajiri K et al (2009) Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly. Chembiochem 10:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Kuzyk A, Laitinen KT, Törmä P (2009) DNA origami as a nanoscale template for protein assembly. Nanotechnology 20:235305

    Article  PubMed  Google Scholar 

  • Ladd J, Boozer C, Yu Q et al (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20:8090–8095

    Article  PubMed  CAS  Google Scholar 

  • Lah J, Seručnik M, Vesnaver G (2011) Influence of a hairpin loop on the thermodynamic stability of a DNA oligomer. J Nucleic Acids 2011:513910

    Article  PubMed  Google Scholar 

  • Lazarides AA, Schatz GC (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104:460–467

    Article  CAS  Google Scholar 

  • Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    PubMed  CAS  Google Scholar 

  • Li J, Pei H, Zhu B et al (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Liu Y, Rinker S et al (2006) DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Iqbal SM (2009) Silicon-based novel bio-sensing platforms at the micro and nano scale. ECS Transactions 16:25–45

    Google Scholar 

  • Lin C, Liu Y, Yan H (2009) Designer DNA nanoarchitectures. Biochemistry 48:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20: 835–839

    PubMed  CAS  Google Scholar 

  • Liu RH, Yang J, Lenigk R et al (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  PubMed  CAS  Google Scholar 

  • Lo PK, Karam P, Aldaye FA et al (2010) Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2:319–328

    Article  PubMed  CAS  Google Scholar 

  • Malo J, Mitchell JC, Vénien-Bryan C et al (2005) Engineering a 2D protein-DNA crystal. Angew Chem Int Ed Engl 44:3057–3061

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Sun W, Seeman NC (1999) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443

    Article  CAS  Google Scholar 

  • Mbindyo JKN, Reiss BD, Martin BR et al (2001) DNA-directed assembly of gold nanowires on complementary surfaces. Adv Mater 13:249–254

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  CAS  Google Scholar 

  • Mischel PS, Cloughesy TF, Nelson SF (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782–792

    Article  PubMed  CAS  Google Scholar 

  • Modi S, Swetha MG, Goswami D et al (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer CM (1999) Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material. Appl Phys A 68:119–124

    Article  CAS  Google Scholar 

  • Noor MR, Goyal S, Christensen SM et al (2009) Electrical detection of single-base DNA mutation using functionalized nanoparticles. Appl Phys Lett 95:073703

    Article  Google Scholar 

  • Obika S, Nanbu D, Hari Y et al (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404

    Article  CAS  Google Scholar 

  • Paukstelis PJ, Nowakowski J, Birktoft JJ et al (2004) Crystal structure of a continuous three-dimensional DNA lattice. Chem Biol 11:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro AV, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  PubMed  CAS  Google Scholar 

  • Prince RB, Barnes SA, Moore S (2000) Foldamer-based molecular recognition. J Am Chem Soc 122:2758–2762

    Article  CAS  Google Scholar 

  • Rice PA, Yang S, Mizuuchi K et al (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Riethdorf S, Fritsche H, Müller V et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13:920–928

    Article  PubMed  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:e424

    Article  PubMed  Google Scholar 

  • Šafařı́k I, Šafařı́ková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722:33–53

    Article  PubMed  Google Scholar 

  • Schienle M, Paulus C, Frey A et al (2004) A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J Solid-State Circuits 39:2438–2445

    Article  Google Scholar 

  • Schulze A, Downward J (2001) Navigating gene expression using microarrays – a technology review. Nat Cell Biol 3:E190–E195

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (1998) DNA nanotechnology: novel DNA constructions. Annu Rev Biophys Biomol Struct 27:225–248

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (1999) DNA engineering and its application to nanotechnology. Trends Biotechnol 17:437–443

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (2007) An overview of structural DNA nanotechnology. Mol Biotechnol 37:246–257

    Article  PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Verzemnieks E et al (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6:639–645

    Article  PubMed  CAS  Google Scholar 

  • Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  PubMed  CAS  Google Scholar 

  • Sieben S, Bergemann C, Lübbe A et al (2001) Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225:175–179

    Article  CAS  Google Scholar 

  • Singh S (2010) Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10:7906–7918

    Article  PubMed  CAS  Google Scholar 

  • Star A, Tu E, Niemann J et al (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103:921–926

    Article  PubMed  CAS  Google Scholar 

  • Stott SL, Hsu CH, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107:18392–18397

    Article  PubMed  CAS  Google Scholar 

  • Toegl A, Kirchner R, Gauer C et al (2003) Enhancing results of microarray hybridizations through microagitation. J Biomol Tech 14:197–204

    PubMed  Google Scholar 

  • Vollmer J, Weeratna R, Payette P et al (2003) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  Google Scholar 

  • Walsh AS, Yin HF, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Kim Y, Li N et al (2010) Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res 70:9371–9380

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Tan J, Asghar W et al (2011) Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B 115:13891–13896

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Mahmood M, Li N et al (2012) Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology. Cancer 118:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Wang J (1998) DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosens Bioelectron 13:757–762

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2000) Survey and summary from DNA biosensors to gene chips. Nucleic Acids Res 28: 3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Palecek E, Nielsen PE et al (1996) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118:7667–7670

    Article  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131

    Article  PubMed  CAS  Google Scholar 

  • Werner MH, Gronenborn AM, Clore GM (1996) Intercalation, DNA kinking, and the control of transcription. Science 271:778–784

    Article  PubMed  CAS  Google Scholar 

  • Winfree E, Liu F, Wenzler LA et al (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  PubMed  CAS  Google Scholar 

  • Yan H, LaBean TH, Feng L et al (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100:8103–8108

    Article  PubMed  CAS  Google Scholar 

  • Yang H, McLaughlin CK, Aldaye FA et al (2009) Metal-nucleic acid cages. Nat Chem 1:390–396

    Article  PubMed  CAS  Google Scholar 

  • Zadegan RM, Norton ML (2012) Structural DNA nanotechnology: from design to applications. Int J Mol Sci 13:7149–7162

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Jacovett EL, Liu Y et al (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed Engl 50:2041–2044

    Article  PubMed  CAS  Google Scholar 

  • Zhao YX, Shaw A, Zeng X et al (2012) A DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Birktoft JJ, Chen Y et al (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Liang X, Mohizuki T et al (2010) A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew Chem Int Ed Engl 122:2213–2216

    Article  Google Scholar 

  • Ziegler A, Zangemeister-Wittke U, Stahel RA (2002) Circulating DNA: a new diagnostic gold mine? Cancer Treat Rev 28:255–271

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahmood, M.A.I., Khan, U.J.M., Iqbal, S.M. (2013). Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_7

Download citation

Publish with us

Policies and ethics