Skip to main content

DNA-Functionalized Gold Nanoparticles for Metabolite and Nucleic Acid Detection

  • Chapter
  • First Online:
DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases

Part of the book series: RNA Technologies ((RNATECHN))

  • 2125 Accesses

Abstract

In this chapter, we introduce the physical properties of DNA-functionalized gold nanoparticles (AuNPs), including distance-dependent color, high DNA loading, protection against nuclease cleavage, and fluorescence quenching. Attaching DNA and aptamers to AuNPs allows the construction of colorimetric and fluorescent biosensors for detecting all types of disease markers, ranging from DNA, RNA, proteins to small molecule metabolites. Early work in this field was performed in clean buffers and in serum samples. Delivery of DNA-functionalized AuNPs into cells has been recently realized, allowing for intracellular detection. At the same time, such AuNPs can be used for delivery of antisense DNA for gene therapy applications. Armed with both detection and therapeutic functions, DNA-functionalized AuNPs represent an ideal platform to achieve the goal of theranostics. The outlook of the field for future development has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian SK, Yang LM, Yung LYL et al (2010) Characterization, purification, and stability of gold nanoparticles. Biomaterials 31:9023–9030

    Article  PubMed  CAS  Google Scholar 

  • Bhatt N, Huang P-JJ, Dave N et al (2011) Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents. Langmuir 27:6132–6137

    Article  PubMed  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  PubMed  CAS  Google Scholar 

  • Cho EJ, Lee J-W, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  • Demers LM, Mirkin CA, Mucic RC et al (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  PubMed  CAS  Google Scholar 

  • Doneux T, Fojt L (2009) Interaction of cytidine 5′-monophosphate with au(111): an in situ infrared spectroscopic study. Chemphyschem 10:649–1655

    Article  Google Scholar 

  • Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    Article  PubMed  CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1080

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    Article  PubMed  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC et al (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    Article  PubMed  CAS  Google Scholar 

  • Harry SR, Hicks DJ, Amiri KI et al (2010) Hairpin DNA coated gold nanoparticles as intracellular mRNA probes for the detection of tyrosinase gene expression in melanoma cells. Chem Commun 46:5557–5559

    Article  CAS  Google Scholar 

  • Hayat MA (1991) Colloidal gold: principles, methods, and applications, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  • Herdt AR, Drawz SM, Kang YJ et al (2006) DNA dissociation and degradation at gold nanoparticle surfaces. Colloids Surf B Biointerfaces 51:130–139

    Article  PubMed  CAS  Google Scholar 

  • Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  • Hill HD, Millstone JE, Banholzer MJ et al (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424

    Article  PubMed  CAS  Google Scholar 

  • Huang C-C, Huang Y-F, Cao Z et al (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhao S, Liang H et al (2011) Multiplex detection of endonucleases by using a multicolor gold nanobeacon. Chemistry 17:7313–7319

    Article  PubMed  CAS  Google Scholar 

  • Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  PubMed  CAS  Google Scholar 

  • Jang NH (2002) The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull Korean Chem Soc 23:1790–1800

    Article  CAS  Google Scholar 

  • Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near d=1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128:5462–5467

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Wu G, Li Z et al (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gandhi KS, Kumar R (2006) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46:3128–3136

    Article  Google Scholar 

  • Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media by DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    Article  CAS  Google Scholar 

  • Li H, Rothberg L (2004a) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039

    Article  PubMed  CAS  Google Scholar 

  • Li H, Rothberg LJ (2004b) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414–5417

    Article  PubMed  CAS  Google Scholar 

  • Li H, Rothberg LJ (2004c) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  PubMed  CAS  Google Scholar 

  • Li HK, Huang JH, Lv JH et al (2005) Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew Chem Int Ed 44:5100–5103

    Article  CAS  Google Scholar 

  • Li F, Zhang J, Cao XN et al (2009) Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 134:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  PubMed  Google Scholar 

  • Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14:10485–10496

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu Y (2006a) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lu Y (2006b) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv Mater 18:1667–1671

    Article  CAS  Google Scholar 

  • Liu JW, Lu Y (2006c) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2007) Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. J Am Chem Soc 129:8634–8643

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959

    Article  CAS  Google Scholar 

  • Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  PubMed  CAS  Google Scholar 

  • Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    Article  PubMed  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  CAS  Google Scholar 

  • Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Kim MI, Cho D-Y et al (2011) Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7:1521–1525

    Article  PubMed  CAS  Google Scholar 

  • Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  PubMed  CAS  Google Scholar 

  • Pavlov V, Xiao Y, Shlyahovsky B et al (2004) Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126:11768–11769

    Article  PubMed  CAS  Google Scholar 

  • Pergolese B, Bonifacio A, Bigotto A (2005) SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles. Phys Chem Chem Phys 7:3610–3613

    Article  PubMed  CAS  Google Scholar 

  • Prigodich AE, Seferos DS, Massich MD et al (2009) Nano-flares for mRNA regulation and detection. ACS Nano 3:2147–2152

    Article  PubMed  CAS  Google Scholar 

  • Qiao GM, Gao Y, Li N et al (2011) Simultaneous detection of intracellular tumor mRNA with bi-color imaging based on a gold nanoparticle/molecular beacon. Chem Eur J 17:11210–11215

    Article  PubMed  CAS  Google Scholar 

  • Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based fret assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Darbha G, Ray A et al (2007) Gold nanoparticle based FRET for DNA detection. Plasmonics 2:173–183

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  PubMed  CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  PubMed  CAS  Google Scholar 

  • Seferos DS, Prigodich AE, Giljohann DA et al (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  PubMed  CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang LH, Liu XF et al (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  • Wang WJ, Chen CL, Qian MX et al (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373:213–219

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhang J, Ekman JM et al (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10:1886–1891

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  PubMed  CAS  Google Scholar 

  • Xia YN, Xiong YJ, Lim B et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  • Xu L, Zhu Y, Ma W et al (2011) New synthesis strategy for DNA functional gold nanoparticles. J Phys Chem C 115:3243–3249

    Article  CAS  Google Scholar 

  • Xue XJ, Wang F, Liu XG (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    Article  PubMed  CAS  Google Scholar 

  • Yang HH, Liu HP, Kang HZ et al (2008) Engineering target-responsive hydrogels based on aptamer—target interactions. J Am Chem Soc 130:6320–6321

    Article  PubMed  CAS  Google Scholar 

  • Yigit MV, Mazumdar D, Kim H-K et al (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Article  PubMed  CAS  Google Scholar 

  • Yun CS, Javier A, Jennings T et al (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127:3115–3119

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang LH, Pan D et al (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang L, Zhang H et al (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6:201–204

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Servos MR, Liu J (2012a) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134:7266–7269

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Servos MR, Liu J (2012b) Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 28:3896–3902

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Seferos DS, Giljohann DA et al (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Liu Q, Jing C et al (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50:11994–11998

    Article  CAS  Google Scholar 

  • Zhou M, Dong S (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res 44:1232–1243

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Wu CC, Liu HP et al (2010) An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed 49:1052–1056

    Article  CAS  Google Scholar 

  • Zu Y, Gao Z (2009) Facile and controllable loading of single-stranded DNA on gold nanoparticles. Anal Chem 81:8523–8528

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ip, A.C.F., Liu, J. (2013). DNA-Functionalized Gold Nanoparticles for Metabolite and Nucleic Acid Detection. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_5

Download citation

Publish with us

Policies and ethics