Oscillator Synchronization in Complex Networks with Non-uniform Time Delays

  • Jens WiltingEmail author
  • Tim S. Evans
Part of the Studies in Computational Intelligence book series (SCI, volume 476)


We investigate a population of limit-cycle Kuramoto oscillators coupled in a complex network topology with coupling delays introduced by finite signal propagation speed and embedding in a ring. By numerical simulation we find that in complete graphs velocity waves arise that were not observed before and analytically not understood. In regular rings and small-world networks frequency synchronization occurs with a large variety of phase patterns. While all these patterns are nearly equally probable in regular rings, small-world topology sometimes prefers one pattern to form for a large number of initial conditions.We propose implications of this in the context of the temporal coding hypothesis for information processing in the brain and suggest future analysis to conclude the work presented here.


Regular Ring Closeness Centrality Phase Pattern Signal Speed Frequency Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., et al.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. (2005), doi:10.1103/RevModPhys.77.137Google Scholar
  2. 2.
    Arenas, A., Díaz-Guilera, A., Kurths, J., et al.: Synchronization in complex networks. Phys. Rep. (2008), doi:10.1016/j.physrep.2008.09.002Google Scholar
  3. 3.
    Boccaletti, S., Kurths, J., Osipov, G., et al.: The synchronization of chaotic systems. Phys. Rep. (2002), doi:10.1016/S0370-1573(02)00137-0Google Scholar
  4. 4.
    Brede, M.: Locals vs. global synchronization in networks of non-identical Kuramoto oscillators. Eur. Phys. J. B (2008), doi:10.1140/epjb/e2008-00126-9Google Scholar
  5. 5.
    Cessac, B., Paugam-Moisy, H., Viéville, T.: J. Physiol. Paris (2010), doi:10.1016/j.jphysparis.2009.11.002Google Scholar
  6. 6.
    Choi, M.Y., Kim, H.J., Kim, D., Hong, H.: Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E (2000), doi:10.1103/PhysRevE.61.371Google Scholar
  7. 7.
    Foss, J., Longtin, A., Mensour, B., Milton, J.: Multistability and delayed recurrent loops. Phys. Rev. Lett. (1996), doi:10.1103/PhysRevLett.76.708Google Scholar
  8. 8.
    Gomez-Gardenes, J., Moreno, Y., Arenas, A.: Paths to Synchronization on Complex Networks. Phys. Rev. Lett. (2007), doi:10.1103/PhysRevLett.98.034101Google Scholar
  9. 9.
    Hong, H., Choi, M.Y., Kim, B.J.: Synchronization on small-world networks. Phys. Rev. E (2002), doi:10.1103/PhysRevE.65.026139Google Scholar
  10. 10.
    Ichinomiya, T.: Frequency synchronization in a random oscillator network. Phys. Rev. E (2004), doi:10.1103/PhysRevE.70.026116Google Scholar
  11. 11.
    Jeong, S.-O., Ko, T.-W., Moon, H.-T.: Time-Delayed Spatial Patterns in a Two-Dimensional Array of Coupled Oscillators. Phys. Rev. Lett. (2002), doi:10.1103/PhysRevLett.89.154104Google Scholar
  12. 12.
    Ko, T.-W., Ermentrout, G.B.: Effects of axonal time delay on synchronization and wave formation in sparsely coupled neuronal oscillators. Phys. Rev. E (2007), doi:10.1103/PhysRevE.76.056206Google Scholar
  13. 13.
    Ko, T.-W., Jeong, S.-O., Moon, H.-T.: Wave formation by time delays in randomly coupled oscillators. Phys. Rev. E. (2004), doi:10.1103/PhysRevE.69.056106Google Scholar
  14. 14.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)Google Scholar
  15. 15.
    Lehnertz, K., Bialonski, S., Horstmann, S.T., et al.: Synchronization phenomena in human epileptic brain networks. J. Neurosi. Meth. (2009), doi:10.1016/j.jneumeth.2009.05.015Google Scholar
  16. 16.
    Moreno, Y., Pacheco, A.F.: Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. (2004), doi:10.1209/epl/i2004-10238-xGoogle Scholar
  17. 17.
    Mormann, F., Lehnertz, K., David, P., Elger, C.E.: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D (2000), doi:10.1016/S0167-2789(00)00087-7Google Scholar
  18. 18.
    Popovych, O.V., Yanchuk, S., Tass, P.A.: Delay- and Coupling-Induced Firing Patterns in Oscillatory Neural Loops. Phys. Rev. Lett. (2011), doi:10.1103/PhysRevLett.107.228102Google Scholar
  19. 19.
    Strogatz, S.H., Mirollo, R.E.: Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. Physica D (1988), doi:10.1016/0167-2789(88)90074-7Google Scholar
  20. 20.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (1998), doi:10.1038/30918Google Scholar
  21. 21.
    Yanchuk, S., Perlikowski, P., Popovych, O., et al.: Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons. Chaos (2011), doi:10.1063/1.3665200Google Scholar
  22. 22.
    Yeung, M.K., Strogatz, S.H.: Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett. (1999), doi:10.1103/PhysRevLett.82.648Google Scholar
  23. 23.
    Zanette, D.H.: Propagating structures in globally coupled systems with time delays. Phys. Rev. E (2000), doi:10.1103/PhysRevE.62.3167Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Networks and Complexity ProgrammeImperial College LondonLondonUnited Kingdom
  2. 2.Dept. of EpileptolgyUniversity of BonnBonnGermany
  3. 3.Theoretical Physics, Blackett LaboratoryImperial College LondonLondonUnited Kingdom

Personalised recommendations