Abstract
Particle Swarm Optimizers (PSOs) have been widely used for optimization problems, but the scientific community still does not have sophisticated mechanisms to analyze the behavior of the swarm during the optimization process. We propose in this paper to use some metrics described in network sciences, specifically the R-value, the number of zero eigenvalues of the Laplacian Matrix, and the Spectral Density, in order to assess the behavior of the particles during the search and diagnose stagnation processes. Assessor methods can be very useful for designing novel PSOs or when one needs to evaluate the performance of a PSO variation applied to a specific problem. In order to apply these metrics, we observed that it is not possible to analyze the dynamics of the swarm by using the communication topology because it does not change. Therefore, we propose in this paper the definition of the influence graph of the swarm. We used this novel concept to assess the dynamics of the swarm. We tested our proposed methodology in three different PSOs in a well-known multimodal benchmark function. We observed that one can retrieve interesting information from the swarm by using this methodology.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002), doi:doi:10.1103/RevModPhys.74.47
Bastos-Filho, C.J.A., Lima-Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: A novel search algorithm based on fish school behavior. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 2646–2651 (2008)
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2007, pp. 120–127. IEEE (2007), doi:10.1109/SIS.2007.368035
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002), doi:10.1109/4235.985692
Dorigo, M., Caro, G.: Ant colony optimization: A new meta-heuristic. In: Proceedings of the Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press (1999)
Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley Publishing (2007)
Farkas, I.J., Derényi, I., Barabási, A.L., Vicsek, T.: Spectra of ”real-world” graphs: beyond the semicircle law. Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2) (2001), http://view.ncbi.nlm.nih.gov/pubmed/11497741
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Tech. rep., Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
Kennedy, J., Eberhart, R.: Particle swarm optimization, vol. 4, pp. 1942–1948 (1995), http://dx.doi.org/10.1109/ICNN.1995.488968 , doi:10.1109/ICNN.1995.488968
Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1671–1676 (2002), doi:10.1109/CEC.2002.1004493
Lewis, T.G.: Network Science: Theory and Applications. Wiley Publishing (2009)
Oliveira-Júnior, M.A.C., Bastos-Filho, C.J.A., Menezes, R.: Using Network Science to Define a Dynamic Communication Topology for Particle Swarm Optimizers. In: Menezes, R., Evsukoff, A., González, M.C. (eds.) Complex Networks. SCI, vol. 424, pp. 39–47. Springer, Heidelberg (2013), doi:10.1007/978-3-642-30287-9_5
Suganthan, P.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, xxxvii+2348 (1999), doi:10.1109/CEC.1999.785514
Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization. Tech. rep., University of Science and Technology of China (USTC), School of Computer Science and Technology, Nature Inspired Computation and Applications Laboratory (NICAL): China
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998), http://dx.doi.org/10.1038/30918 , doi:10.1038/30918
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oliveira-Júnior, M.A.C., Bastos-Filho, C.J.A., Menezes, R. (2013). Assessing Particle Swarm Optimizers Using Network Science Metrics. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds) Complex Networks IV. Studies in Computational Intelligence, vol 476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36844-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-36844-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36843-1
Online ISBN: 978-3-642-36844-8
eBook Packages: EngineeringEngineering (R0)