Advertisement

Unfolding Ego-Centered Community Structures with “A Similarity Approach”

  • Maximilien Danisch
  • Jean-Loup Guillaume
  • Bénédicte Le Grand
Part of the Studies in Computational Intelligence book series (SCI, volume 476)

Abstract

We propose a framework to unfold the ego-centered community structure of a given node in a network. The framework is not based on the optimization of a quality function, but on the study of the irregularity of the decrease of a similarity measure. It is a practical use of the notion of multi-ego-centered community and we validate the pertinence of the approach on a real-world network of wikipedia pages.

Keywords

Quality Function Community Detection Large Graph Jaccard Similarity Candidate Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BLO08]
    Vincent, D.: Blondel, Jean-Loup Guillaume, Renaud Lambiotte and Etienne Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech. (2008)Google Scholar
  2. [CLA05]
    Clauset, A.: Finding local community structure in networks. Physical Review E 72, 026132 (2005)Google Scholar
  3. [CHE09]
    Chen, J., Zaiane, O.R., Goebel, R.: Community Identification in Social Networks. Local, Advances in Social Network Analysis and Mining (2009)Google Scholar
  4. [DAN12]
    Danisch, M., Guillaume, J.-L., Le Grand, B.: Towards multi-ego-centered communities: a node similarity approach. Int. J. of Web Based Communities (2012)Google Scholar
  5. [EVA09]
    Evans, T.S., Lambiotte, R.: Line Graphs, Link Partitions and Overlapping Communities. Phys.Rev.E 80, 016105 (2009), doi:10.1103/PhysRevE.80.016105Google Scholar
  6. [FOR10]
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  7. [FRI11]
    Friggeri, A., Chelius, G., Fleury, E.: Triangles to Capture Social Cohesion. IEEE (2011)Google Scholar
  8. [GIR02]
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. [GLE03]
    Gleiser, P., Danon, L.: Adv. Complex Syst. 6, 565 (2003)CrossRefGoogle Scholar
  10. [NEW06]
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E (2006)Google Scholar
  11. [NGO12]
    Ngonmang, B., Tchuente, M., Viennet, E.: Local communities identification in social networks. Parallel Processing Letters 22(1) (March 2012)Google Scholar
  12. [PAL05]
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature (2005)Google Scholar
  13. [PAL08]
    Palla, G., Farkas, I.J., Pollner, P., Derenyi, I., Vicsek, T.: Fundamental statistical features and self-similar properties of tagged networks. New J. Phys. 10, 123026 (2008)Google Scholar
  14. [ROS08]
    Rosvall, M., Carl, T.: Bergstrom/ Maps of information flow reveal community structure in complex networks. PNAS 105, 1118 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maximilien Danisch
    • 1
  • Jean-Loup Guillaume
    • 1
  • Bénédicte Le Grand
    • 2
  1. 1.LIP6Université Pierre et Marie CurieParisFrance
  2. 2.CRIUniversité Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations