Understanding History Through Networks: The Brazil Case Study

  • Hugo S. Barbosa-Filho
  • Fernando B. de Lima-Neto
  • Ronaldo Menezes
Part of the Studies in Computational Intelligence book series (SCI, volume 476)


In the 19th century Alphonse the Lamartine (1790-1869), a French writer, said that ”History Teaches Everything, Including the Future.” This is a very accurate statement; the definition of what makes whole nations, what characterizes patriotism, relates to the history of that particular place. This understanding about the importance of History has always been recognized by thinkers, philosophers and writers. However, historical facts are often source of controversies and debates. In this paper we have applied Network Science techniques to analyze a Social Network of the History of Brazil to create a rank of Historical Characters. To carry out such analyses we first have built a dataset based on Wikipedia text bodies using Natural Language Processing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruffini, G.: Social Networks in Byzantine Egypt. Cambridge University Press (2008)Google Scholar
  2. 2.
    Hook, S.: The Hero in History: A Study in Limitation and Possibility. Transaction Publishers (1945)Google Scholar
  3. 3.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)CrossRefGoogle Scholar
  4. 4.
    Preiser-Kapeller, J.: Luhmann in Byzantium. A systems theory approach for historical network analysis more. 1316, 1–22 (2012)Google Scholar
  5. 5.
    Preiser-Kapeller, J.: Webs of conversion. An analysis of social networks of converts across Islamic-Christian borders in Anatolia. South-eastern Europe and the Black Sea from the., 1–34 (2012)Google Scholar
  6. 6.
    Wang, C., Kalyanpur, A.: Relation extraction and scoring in DeepQA. IBM Journal of Research and Development 56(3.4), 9:1–9:12 (2012)Google Scholar
  7. 7.
    Berners-Lee, T.: The Semantic Web. Scientific American 21 (2001)Google Scholar
  8. 8.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J.: Dbpedia: A nucleus for a web of open data. The Semantic Web (2007)Google Scholar
  9. 9.
    Pattuelli, M.: Linked Jazz: an exploratory pilot. In: Conference on Dublin Core and Metadata Applications 2011, pp. 158–164 (August 2010, 2011)Google Scholar
  10. 10.
    Passant, A., Raimond, Y.: Combining Social Music and Semantic Web for music-related recommender systems. In: Social Data on the Web Workshop (2008)Google Scholar
  11. 11.
    Hienert, D., Luciano, F.: Extraction of historical events from wikipedia, arXiv preprint arXiv:1205.4138 (2012)Google Scholar
  12. 12.
    Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. Proceedings of EMNLP-CoNLL, 708–716 (June 2007)Google Scholar
  13. 13.
    Chang, J., Boyd-Graber, J., Blei, D.: Connections between the lines: augmenting social networks with text. In: Proceedings of the 15th ACM..., pp. 169–177 (2009)Google Scholar
  14. 14.
    Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning multilingual named entity recognition from Wikipedia. Artificial Intelligence 1, 1–25 (2012)Google Scholar
  15. 15.
    Vicentino, C., Dorigo, G.: História Para o Ensino Médio: História Geral e do Brasil, 3rd edn. Editora Scipione, São Paulo (2008) (in portuguese)Google Scholar
  16. 16.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  17. 17.
    Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The origin of power laws in Internet topologies revisited. In: Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 608–617. IEEE (2002)Google Scholar
  18. 18.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America 97(21), 11149–111452 (2000)CrossRefGoogle Scholar
  19. 19.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  20. 20.
    Gomes, L.: Como Uma Rainha Louca, Um Príncipe Medroso e Uma Corte Corrupta Enganaram Napoleão e Mudaram e História de Portugal e do Brasil. Editora Planeta do Brasil (1808)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hugo S. Barbosa-Filho
    • 1
  • Fernando B. de Lima-Neto
    • 2
  • Ronaldo Menezes
    • 1
  1. 1.BioComplex Laboratory, Computer Science DepartmentFlorida Institute of TechnologyMelbourneUSA
  2. 2.Polytechnique School of PernambucoUniversity of PernambucoRecifeBrazil

Personalised recommendations