Detecting Social Capitalists on Twitter Using Similarity Measures

Part of the Studies in Computational Intelligence book series (SCI, volume 476)


Social networks such as Twitter or Facebook are part of the phenomenon called Big Data, a term used to describe very large and complex data sets. To represent these networks, the connections between users can be easily represented using (directed) graphs. In this paper, we are mainly focused on two different aspects of social network analysis. First, our goal is to find an efficient and high-level way to store and process a social network graph, using reasonable computing resources (processor and memory).We believe that this is an important research interest, since it provides a more democratic method to deal with large graphs.Next, we turn our attention to the study of social capitalists, a specific kind of users on Twitter. Roughly speaking, such users try to gain visibility by following other users regardless of their contents. Using two similarity measures called overlap index and ratio, we show that such users may be detected and classified very efficiently.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LIFOUniversité d’OrléansOrléansFrance

Personalised recommendations