Skip to main content

2 Fungal Spoilage of Crops and Food

  • Chapter
  • First Online:
Book cover Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Food products are a rich nutrient source that will attract both bacterial and fungal colonizers. Food spoilage is a major threat for our food stock and is responsible for enormous losses worldwide, which makes it a research area that is very relevant with respect to the increasing demand on food during the next decennia.

This chapter will highlight fungal spoilage, including the fact that it deals mostly with plant-based food products. Firstly, the relationship between the living crop and fungi will be illustrated. Between host and pathogen there exists a surprisingly complex communication, and successful intervention may result in novel strategies to prevent post-harvest diseases.

Then the association of fungi with different types of processed food will be described. Over time, different preservation techniques have been developed with the aim of discouraging fungal development in the food product. These include fermentation, addition of salts or high concentrations of sugars, pickling, drying, cooling, the addition of preservatives or a heating treatment before packaging. Only fungi that can survive these adverse conditions can successfully spoil processed food. Different aspects of stress resistance are addressed in this chapter, including osmo- and xerotolerance, protective compounds inside cells, and heat-resistant structures. Food parameters are often surprisingly restrictive to the spectrum of fungal species which are able to grow and thus spoil the individual food types. Normally, less than ten and often one to three species are responsible for spoilage. Careful elucidation of the specific aspects of food spoilage may lead to novel tailor-made methods to decrease the enormous portion of our food that is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan OCG, Samson RA (2011) Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Press, The Netherlands, 523 pp

    Google Scholar 

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    CAS  Google Scholar 

  • Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162:300–306

    PubMed  CAS  Google Scholar 

  • Alkan N, Fluhr R, Sherman A, Prusky D (2008) Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit. Mol Plant Microb Interact 21:1058–1066

    CAS  Google Scholar 

  • Alkan N, Davydov O, Sagi M, Fluhr R, Prusky D (2009) Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits. Mol Plant Microbe Interact 22:1484–1491

    PubMed  CAS  Google Scholar 

  • Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 183:3251–3255

    PubMed  CAS  Google Scholar 

  • Amselem J, Cuomo CA, Van Kan J, Viaud M, Benito EP, Couloux A, Coutinho PM, De Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, Ten Have A, Tudzynski B, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett B, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins J, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    PubMed  CAS  Google Scholar 

  • Andrade MJ, Córdoba JJ, Casado EM, Córdoba MG, Rodríguez M (2010) Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci 85:256–264

    PubMed  CAS  Google Scholar 

  • Ardi R, Kobiler I, Keen NT, Prusky D (1998) Involvement of epicatechin biosynthesis in the resistance of avocado fruits to postharvest decay. Physiol Mol Plant Pathol 53:269–285

    CAS  Google Scholar 

  • Barbosa-Cànovas GV, Pothakamury U, Palou E, Swanson B (1998) High hydrostatic pressure food processing. In: Barbosa-Cànovas GV, Pothakamury U, Palou E, Swanson B (eds) Nonthermal presevation of foods. Marcel Dekker, New York, pp 9–52

    Google Scholar 

  • Bayne HG, Michener HD (1979) Heat resistance of Byssochlamys ascospores. Appl Environ Microbiol 37:449–453

    PubMed  CAS  Google Scholar 

  • Bechinger C, Giebel K-F, Schnell M, Leiderer P, Deising HB, Bastneyer M (1999) Optical measurement of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899

    PubMed  CAS  Google Scholar 

  • Bekker M, Adan OA, Huinink H, Samson RA, Dijksterhuis J (2012) Production of an extra cellular matrix is an isotrophic growth phase in Penicillium rubens on gypsum. Appl Environ Microbiol 78:6930–6937

    PubMed  CAS  Google Scholar 

  • Beno-Moualem D, Prusky D (2000) Early events during quiescent infection development by Colletotrichum gloeosporioides in unripe avocado fruits. Pythopathol 90:553–559

    CAS  Google Scholar 

  • Berbee ML, Yoshimura A, Sugiyama J, Taylor JW (1995) Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87:210–222

    CAS  Google Scholar 

  • Beuchat LR (1986) Extraordinary heat resistance of Talaromyces flavus and Neosartorya fischeri ascospores in fruit products. J Food Sci 51:1506–1510

    Google Scholar 

  • Beuchat LR (1988a) Thermal tolerance of Talaromyces flavus ascospores as affected by growth medium and temperature, age and sugar content in the inactivation medium. Trans Br Mycol Soc 90:359–374

    CAS  Google Scholar 

  • Beuchat LR (1988b) Influence of organic acids on heat resistance characteristics of Talaromyces flavus ascospores. Int J Food Microbiol 6:97–105

    PubMed  CAS  Google Scholar 

  • Beuchat LR (1992) Survival of Neosartorya fischeri and Talaromyces flavus ascospores in fruit powders. Lett Appl Microbiol 14:238–240

    Google Scholar 

  • Beuchat LR, Kuhn GD (1997) Thermal sensitivity of Neosartorya fischeri ascospores in regular and reduced-sugar grape jelly. J Food Prot 60:1577–1579

    Google Scholar 

  • Bonnen A, Brambl R (1983) Germination physiology of Neurospora crassa conidia. Exp Mycol 7:197–207

    CAS  Google Scholar 

  • Borner H (1963) Untersuchungen uber die Bildung antiphytotischer und antimicrobieller Substanzen durch Mikroorganism im Bodem und ihre mögliche Bedeutung für die Bodenmüdigkeit beim Apfels Pirus malus L. Phytopathol Z 49:1–28

    Google Scholar 

  • Butz P, Funtenberger S, Haberditzl T, Tausher B (1996) High pressure inactivation of Byssochlamys nivea ascospores and other heat resistant moulds. LebensmWiss Technol 29:404–410

    CAS  Google Scholar 

  • Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci USA 105:859–864

    PubMed  CAS  Google Scholar 

  • Casa E, De Ancos B, Valderrama MJ, Cano P, Peinado JM (2004) Pentadiene production from potassium sorbate by osmotolerant yeasts. Int J Food Microbiol 94:93–96

    Google Scholar 

  • Casella MLA, Matasci F, Schmidt-Lorenz W (1990) Influence of age, growth medium, and temperature on heat resistance of Byssochlamys nivea ascospores. Lebensm Wiss Technol 23:404–411

    Google Scholar 

  • Cheng L, Moghraby J, Piper PW (1999) Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett 170:89–95

    PubMed  CAS  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci USA 107:7835–7840

    PubMed  CAS  Google Scholar 

  • Chitarra GS, Dijksterhuis J (2007) The germinating spore as a contaminating vehicle. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 83–100

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    PubMed  CAS  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol has mild effects on membrane permeability, respiration and intracellular pH, but blocks germination and changes the protein composition of Penicillium paneum conidia. FEMS Microbiol Ecol 54:67–75

    PubMed  CAS  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous –pathogen. FEMS Microbiol 277:1–10

    CAS  Google Scholar 

  • Clipson NJW, Jennings DH (1992) Dendryphiella salina and Debaryomyces hansenii: models for ecophysical adaptation to salinity by fungi that grow in the sea. Can J Bot 70:2097–2105

    Google Scholar 

  • Conner DE, Beuchat LR (1987) Efficacy of media for promoting ascospore formation by Neosartory fischeri, and the influence of age and culture temperature on heat resistance of ascospores. Food Microbiol 4:229–238

    Google Scholar 

  • Conner DE, Beuchat LR, Chang CJ (1987) Age-related changes in ultrastructure and chemical composition associated with changes in heat resistance of Neosartorya fischeri ascospores. Trans Br Mycol Soc 89:539–550

    Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    PubMed  CAS  Google Scholar 

  • D’ Enfert C, Fontaine T (1997) Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24:203–216

    Google Scholar 

  • D’ Enfert C, Bonini BM, Zapella PDA, Fontaine T, Da Silva AM, Terenzi HF (1999) Neutral trehalase catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483

    Google Scholar 

  • Dao T, Dantigny P (2009) Preparation of fungal spores impacts their susceptibility to inactivation by ethanol vapours. Int J Food Microbiol 135:268–273

    PubMed  CAS  Google Scholar 

  • Dao T, Dejardin J, Bensoussan M, Dantigny P (2010) Use of the Weibull model to describe the inactivation of dry-harvested conidia of different Penicillium species by ethanol vapours. J Appl Microbiol 109:408–414

    PubMed  CAS  Google Scholar 

  • De Vries RP (2000) Accessory enzymes from Aspergillus involved in xylan and pectin degradation. Ph.D. thesis, Wageningen University, 192 pp

    Google Scholar 

  • De Vries RP, Visser J (2001) Enzymes from Aspergilli involved in the degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    PubMed  Google Scholar 

  • d’Enfert C (1997) Fungal Spore Germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163–172

    Google Scholar 

  • Dijksterhuis J (2007) Heat-resistant ascospores. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 101–117

    Google Scholar 

  • Dijksterhuis J, Samson RA (2006a) Zygomycetes. In: de Blackburn CW (ed) Food spoilage microorganisms. Woodhead Publishing Ltd, Cambridge, pp 415–436

    Google Scholar 

  • Dijksterhuis J, Samson RA (2006b) Activation of ascospores by novel food preservation techniques. Adv Exp Med Biol 571:247–260

    PubMed  CAS  Google Scholar 

  • Dijksterhuis J, Samson RA (2007) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, 403 pp

    Google Scholar 

  • Dijksterhuis J, Teunissen PGM (2004) Dormant ascospores of Talaromyces macrosporus are activated to germinate after treatment with ultra high pressure. J Appl Microbiol 96:162–169

    PubMed  CAS  Google Scholar 

  • Dijksterhuis J, Van Driel K, Sanders M, Houbraken J, Molenaar D, Samson RA, Kets EPW (2002) Glucose efflux and cell ejection during germination of heat activated ascospores of Talaromyces macrosporus. Arch Microbiol 78:1–7

    Google Scholar 

  • Dijksterhuis J, Nijsse J, Hoekstra FA, Golovina EA (2007) High viscosity and anisotropy characterize the cytoplasm of dormant stress-resistant spores. Eukaryot Cell 6:157–170

    PubMed  CAS  Google Scholar 

  • Dijksterhuis J, de Rodriquez MP, Da Silva P, Dantigny P (2012) Primary models for inactivation of fungal spores. In: Dantigny P, Panagou EZ (eds) Predictive mycology. Nova, New York

    Google Scholar 

  • Eckert JW, Ratnayake M (1994) Role of volatile compounds from wounded oranges in induction of germination of Penicillium digitatum conidia. Phytopathology 84:746–750

    CAS  Google Scholar 

  • Eshel D, Miyara I, Ailing T, Dinoor A, Prusky D (2002) pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit. MPMI 15:774–779

    PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroce MK, Van Dijck P, De Vries RP, Ruijter G, Thevelein J, D’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiol 147:1851–1862

    CAS  Google Scholar 

  • Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening hormones as a signal. Proc Natl Acad Sci USA 91:6579–6583

    PubMed  CAS  Google Scholar 

  • Flannigan B, Samson RA, Miller JD (2011) Microorganisms in home and indoor work environments. Diversity, health impacts, investigation and control, 2nd edn. Taylor and Francis, Boca Raton, 539 pp

    Google Scholar 

  • Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C, Prevost M-C, Latgé JP (2010) Cell wall α1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fung Genet Biol 47:707–712

    CAS  Google Scholar 

  • Frisvad JC, Filtenborg O (1988) Specific mycotoxin producing Penicillium and Aspergillus mycoflora of different foods. Proc Jpn Assoc Mycotoxicol Suppl 1:163–166

    Google Scholar 

  • Frisvad JC, Filtenborg O (1993) Mycotoxin production by Penicillium and Aspergillus species associated with different foods and other substrates. In: Scudamore K (ed) Occurrence and significance of mycotoxins. Central Science Laboratory, Slough, pp 138–145

    Google Scholar 

  • Frisvad JC, Thrane U, Samson RA (2007a) Mycotoxin producers. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 135–159

    Google Scholar 

  • Frisvad JC, Andersen B, Samson RA (2007b) Association of moulds to foods. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 199–239

    Google Scholar 

  • Gomez MM, Busta FF, Pflug IJ (1989) Effect of the post-dry heat treatment temperature on the recovery of ascospores of Neosartorya fischeri. Lett Appl Microbiol 8:59–62

    Google Scholar 

  • Gomez MM, Pflug IJ, Busta FF (1993) Factors affecting recovery of Neosartorya fischeri after exposure to dry heat. J Par Sci Technol 47:300–305

    CAS  Google Scholar 

  • González-Hernández JC, Jiménez-Estrada M, Peña A (2005) Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 9:7–16

    PubMed  Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun M-H, Levis C (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    PubMed  CAS  Google Scholar 

  • Guetsky R, Kobiler I, Wang X, Perlman N, Gollop N, Avila-Quezada G, Hadar I, Prusky D (2005) Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Pythopathol 95:1341–1348

    CAS  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 13:1231–1241

    Google Scholar 

  • Hadas Y, Goldberg I, Pines O, Prusky D (2007) Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples. Phytopathol 97:384–390

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1994) Effects of KCl concentrations on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Lett Appl Microbiol 18:8–11

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442

    PubMed  CAS  Google Scholar 

  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when “to be or not to be” a pathogen? FEMS Microbiol Lett 251:177–184

    PubMed  CAS  Google Scholar 

  • Herrero-Garcia E, Garzia A, Cordobes S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fung Biol 115:393–400

    CAS  Google Scholar 

  • Hoogerwerf SA, Kets EPW, Dijksterhuis J (2002) High-oxigen and high-carbon dioxide containing atmospheres inhibit growth of food-associated moulds. Let Appl Microbiol 35:419–422

    CAS  Google Scholar 

  • Horikoshi K, Ikeda Y (1966) Trehalase in conidia of Aspergillus oryzae. J Bacteriol 91:1883–1887

    PubMed  CAS  Google Scholar 

  • Hosono K (2000) Effect of nystatin on the release of glycerol from salt-stressed cells of the salt-tolerant yeast Zygosaccharomyces rouxii. Arch Microbiol 173:284–287

    PubMed  CAS  Google Scholar 

  • Hottiger T, DeVirgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the stability of proteins in vivo. Eur J Biochem 219:187–193

    PubMed  CAS  Google Scholar 

  • Houbraken JAMP, Varga J, Rico-Munoz E, Johnson S, Samson RA (2008) Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (Anamorph Paecilomyces variotii). Appl Environ Microbiol 74:1613–1619

    PubMed  CAS  Google Scholar 

  • Iwaki T, Higashida Y, Tsuji T, Tamai Y, Watanabe Y (1998) Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14:1167–1174

    PubMed  CAS  Google Scholar 

  • Jennings DH, Burke RM (1990) Compatible solutes – the mycological dimension and their role as physiological buffering agents. New Phytol 116:277–283

    CAS  Google Scholar 

  • Karlshøj K, Nielsen PV, Larsen TO (2007) Fungal volatiles: biomarkers of good and bad food quality. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 279–302

    Google Scholar 

  • Kikoku Y (2003) Heat activation characteristics of Talaromyces ascospores. J Food Sci 68:2331–2335

    CAS  Google Scholar 

  • Kim YK, Li D, Kolattukudy PA (1998) Induction of Ca2+calmodulin signalling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J Bacteriol 180:5144–5150

    PubMed  CAS  Google Scholar 

  • Kim YT, Prusky D, Rollins JA (2007) An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol Plant Pathol 8:611–622

    PubMed  CAS  Google Scholar 

  • King AD, Whitehand LC (1990) Alteration of Talaromyces flavus heat resistance by growth conditions and heating medium composition. J Food Sci 55:830–832

    Google Scholar 

  • Kolattukudy PA, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signalling in pathogenesis. Proc Natl Acad Sci USA 92:4080–4087

    PubMed  CAS  Google Scholar 

  • Kotzekidou P (1997) Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. J Food Sci 62:410–412

    CAS  Google Scholar 

  • Lages F, Silva-Graça LC (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol 145:2577–2585

    CAS  Google Scholar 

  • Leandro MJ, Sychrová H, Prista C, Loureiro-Dias MC (2011) The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology 157:601–608

    PubMed  CAS  Google Scholar 

  • Leong SL, Vinnere-Pettersson RT, Hocking AD, Schnürer J (2011) The extreme xerophilic mould Xeromyces bisporus – growth and competition at various water activities. Int J Food Microbiol 145:57–63

    PubMed  Google Scholar 

  • Leyva JS, Manrique M, Prats L, Loureiro-Dias MC, Peiñado JM (1999) Regulation of fermentative CO2 production by the food spoilage yeast Zygosaccharomyces bailii. Enzyme Microbiol Technol 24:270–275

    CAS  Google Scholar 

  • Lucas C, Da Costa M, Van Uden N (1990) Osmoregulatory active sodium-glycerol co-transport in the halotolerant yeast Debaryomyces hansenii. Yeast 6:187–191

    CAS  Google Scholar 

  • Luxo C, Fernanda Nobre M, Da Costa MS (1993) Intracellular polyol accumulation by yeast-like fungi of the genera Geotrichum and Endomyces in response to water stress (NaCl). Can J Microbiol 39:868–873

    CAS  Google Scholar 

  • Magan N, Aldred D, Dijksterhuis J (2012) The physiological state of fungal spores and survival dynamics. In: Dantigny P, Panagou EZ (eds) Predictive mycology. Nova, New York

    Google Scholar 

  • Mann DA, Beuchat LR (2008) Combinations of antimycotics to inhibit the growth of molds capable of producing 1,3-pentadiene. Food Microbiol 25:144–153

    PubMed  CAS  Google Scholar 

  • Martínez JL, Sychrova H, Ramos J (2011) Monovalent cations regulate expression and activity of the Hak1 potassium transporter in Debaryomyces hansenii. Fungal Gen Biol 48:177–184

    Google Scholar 

  • Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242

    PubMed  CAS  Google Scholar 

  • Mehyar GF, Al-Qadiri HM, Abu-Blan HA, Swanson BG (2011) Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage. J Food Sci 76:210–217

    Google Scholar 

  • Membre JM, Kubaczka M, Chene C (1999) Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Environ Microbiol 65:4921–4925

    PubMed  CAS  Google Scholar 

  • Miyara I, Shafran H, Kramer Haimovich H, Rollings J, Sherman A, Prusky D (2008) Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruit. Mol Pathol 9:281–291

    CAS  Google Scholar 

  • Morozova EV, Kozlov VP, Tereshina VM, Memorskaya AS, Feofilova EP (2002) Changes in lipid composition and carbohydrate composition of Aspergillus niger conidia during germination. Prikl Biokhim Mikrobiol 38:149–154

    PubMed  CAS  Google Scholar 

  • Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising H (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51

    PubMed  Google Scholar 

  • Nagtzaam MPM, Bollen GJ (1994) Long shelf life of Talaromyces flavus in coating material of pelleted seed. Eur J Plant Pathol 100:279–282

    Google Scholar 

  • Niem J, Miyara I, Ettedgui Y, Reuveni M, Flaishman M, Prusky D (2007) Core rot development in red delicious apples is affected by susceptibility of the seed locule to Alternaria alternata colonization. Phytopathol 97:1415–1421

    CAS  Google Scholar 

  • Osherov N, May G (2000) Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656

    PubMed  CAS  Google Scholar 

  • Padamsee M, Arun Kumar TK, Riley R, Binder M, Boyd A, Calvo AM et al (2012) The genome of the xerotolerant mould Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Gen Biol 49:217–226

    CAS  Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Canovas GV, WeltiChanes J, Davidson PM, Swanson BG (1998) Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates. Lett Appl Microbiol 27:375–378

    PubMed  CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, D’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CAMJJ, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pál K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HAB, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnol 25:221–231

    Google Scholar 

  • Petersson S, Jonsson N, Schnürer J (1999) Pichia anomala as a biocontrol agent during storage of high-moisture feed grain under airtight conditions. Postharvest Biol Technol 15:175–184

    Google Scholar 

  • Petrovič U, Gunde-Zimmerman N, Zalar P (2000) Xerotolerant mycobiota from high altitude Annapurna soil, Nepal. FEMS Microbiol Let 182:339–342

    Google Scholar 

  • Pinches SE, Apps P (2007) Production in food of 1,3-pentadiene and styrene by Trichoderma species. Int J Food Sci 116:182–185

    CAS  Google Scholar 

  • Piper P, Ortiz Calderon C, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiol 147:2635–2642

    CAS  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Dordrecht/Heidelberg, 519 pp

    Google Scholar 

  • Plumridge A, Hesse SJA, Watson AJ, Lowe KC, Stratford M, Archer DB (2004) The weak-acid preservative, sorbic acid, inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification. Appl Environ Microbiol 70:3506–3511

    PubMed  CAS  Google Scholar 

  • Plumridge A, Stratford M, Lowe KC, Archer DB (2008) The weak-acid preservative, sorbic acid, is decarboxylated and detoxified by a phenylacrylic acid decarboxylase, PadA1, in the spoilage mould Aspergillus niger. Appl Environ Microbiol 74:550–552

    PubMed  CAS  Google Scholar 

  • Plumridge A, Melin P, Stratford M, Novodvorska M, Shunburne L, Dyer PS, Roubos JA, Menke H, Stark J, Stam H, Archer DB (2010) The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp. Fung Genet Biol 47:683–692

    CAS  Google Scholar 

  • Podila GK, Rogers LM, Kolattukudy PA (1993) Chemical signals from avocado wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol 103:267–272

    PubMed  CAS  Google Scholar 

  • Přibylova L, Farkas V, Slaninova I, De Montigny J, Sychrova H (2007) Differences in osmotolerant and cell-wall properties of two Zygosaccharomyces rouxii strains. Folia Microbiol 52:241–245

    Google Scholar 

  • Pribylova L, Papouskova K, Sychrova H (2008) The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+ -antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology. Fung Genet Biol 45:1439–1447

    CAS  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    PubMed  CAS  Google Scholar 

  • Prista C, Loureiro-Dias C, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701

    PubMed  CAS  Google Scholar 

  • Prusky D, Kolattukudy PE (2007) Cross-talk between host and fungus in postharvest situations and its effect on symptom development. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 3–25

    Google Scholar 

  • Prusky D, Lichter A (2007) Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage. FEMS Microbiol Lett 268:1–8

    PubMed  CAS  Google Scholar 

  • Prusky D, McEvoy JL, Saftner R, Conway WS, Jones R (2004) Relationship between host acidification and virulence of Penicillium spp. on apple and citrus fruit. Phytopathol 94:44–51

    Google Scholar 

  • Put HMC, De Jong J (1980) The heat resistance of selected yeasts causing spoilage of canned soft drinks and fruit products. In: Skinner FA, Passmore SM, Davenport RR (eds) Biology and activities of yeasts, vol 9, Society for applied bacteriology symposium series. Academic, London

    Google Scholar 

  • Rajashekhara E, Suresh ER, Ethiraj S (1998) Thermal death rate of ascospores of Neosartorya fischeri ATCC 200957 in the presence of organic acids and preservatives in fruit juices. J Food Prot 61:1358–1362

    PubMed  CAS  Google Scholar 

  • Reyns KMFA, Verbeke EAV, Michiels CEW (2003) Activation and inactivation of Talaromyces macrosporus ascospores by high hydrostatic pressure. J Food Prot 66:1035–1042

    PubMed  Google Scholar 

  • Rodriguez F, Côrte-Real M, Leão C, Van Dijken JP, Pronk JT (2001) Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media. Appl Environ Microbiol 67:2123–2128

    Google Scholar 

  • Sakamoto K, Iwashita K, Yamada O, Kobayashi K, Mizuno A, Akita O, Mikami S, Shimoi H, Gomi K (2009) Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fung Genet Biol 46:887–897

    CAS  Google Scholar 

  • Samson RA, Frisvad JC (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  • Samson RA, Houbraken JAMP (eds) (2011) Phylogenetic and taxonomic studies on the genera Penicillium and Talaromyces. Stud Mycol 70, 183 pp

    Google Scholar 

  • Samson RA, Varga J (2007) Aspergillus systematic in the genomic era. Stud Mycol 59:1–206

    PubMed  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2004) Introduction to food- and airborne fungi, 7th edn. Centraalbureau voor Schimmelcultures, Utrecht, 389 pp

    Google Scholar 

  • Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    CAS  Google Scholar 

  • Smid EJ, Hendriks L, Boerrigter HAM, Gorris LGM (1996) Surface disinfection of tomatoes using the natural plant compound trans-cinnamaldehyde. Postharvest BioI Technol 9:343–350

    CAS  Google Scholar 

  • Snowdon AL (1990) A colour atlas of post-harvest diseases and disorders of fruits and vegetables, vol 1, General introduction and fruits. Wolfe Scientific Ltd, London

    Google Scholar 

  • Splittstoesser DF, Splittstoesser CM (1977) Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J Food Sci 4:685–688

    Google Scholar 

  • Splittstoesser DF, Lammers JM, Downing DL, Churey JJ (1989) Heat resistance of Eurotium herbariorum, a xerophilic mold. J Food Sci 54:683–685

    CAS  Google Scholar 

  • Stark J (2007) Cheese and fermented sausages. In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to fungi and food. Taylor and Francis, Boca Raton, pp 319–331

    Google Scholar 

  • Steels H, James SA, Roberts IN, Stratford M (2000) Sorbic acid resistance: the inoculum effect. Yeast 16:1173–1183

    PubMed  CAS  Google Scholar 

  • Stratford M, Plumridge A, Pleasants MW, Novodvorska M, Baker-Glenn CAG, Pattenden G, Archer DB (2012) Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger. Int J Food Microbiol 157:375–383

    PubMed  CAS  Google Scholar 

  • Sussman S, Halvorson HO (1966) Spores, their dormancy and germination. Harper and Row, New York

    Google Scholar 

  • Te Welscher YM, ten Napel HH, Balagué MM, Souza CM, Riezman H, de Kruijff B, Breukink E (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401

    Google Scholar 

  • Te Welscher YM, Jones L, Van Leeuwen MR, Dijksterhuis J, De Kruijff B, Eitzen G, Breukink EJ (2010) Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Chemother 54:2618–2625

    Google Scholar 

  • Te Welscher YM, Van Leeuwen MR, De Kruijff B, Dijksterhuis J, Breukink EJ (2012) Polyene antibiotic that inhibits membrane transport proteins. Proc Natl Acad Sci USA 109:11156–11159

    Google Scholar 

  • Thanh NV, Nout MJ (2004) Dormancy, activation and viability of Rhizopus oligosporus sporangiospores. Int J Food Microbiol 92:171–179

    PubMed  CAS  Google Scholar 

  • Thanh NV, Rombouts FM, Nout MJ (2005) Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. J Appl Microbiol 99:1204–1214

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    PubMed  CAS  Google Scholar 

  • Tiedt LR (1993) An electron microscope study of conidiogenesis and wall formation of conidia of Aspergillus niger. Mycolog Res 12:1459–1462

    Google Scholar 

  • Tournas V (1994) Heat-resistant fungi of importance to the food and beverage industry. Crit Rev Microbiol 20:243–263

    PubMed  CAS  Google Scholar 

  • Valencia-Chamorro SA, Pérez-Gago MB, Del Río MA, Palou L (2010) Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored “Ortanique” mandarins. J Food Sci 75:418–426

    Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    PubMed  Google Scholar 

  • Van Leeuwen MR, De Boer W, Smant W, Dijksterhuis J (2008) Filipin is a reliable in situ marker of ergosterol in the plasma membrane of germinating conidia (spores) of Penicillium discolor and stains intensively at the site of germ tube formation. J Microbiol Methods 74:64–73

    PubMed  Google Scholar 

  • Van Leeuwen MR, Golovina EA, Dijksterhuis J (2009) The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor. J Appl Microbiol 106:1908–1918

    PubMed  Google Scholar 

  • Van Leeuwen MR, Van Doorn T, Golovina EA, Stark J, Dijksterhuis J (2010) Water- and air-distributed conidia exhibit differences in sterol content and cytoplasmic microviscosity. Appl Environ Microbiol 67:366–369

    Google Scholar 

  • Van Leeuwen MR, Krijgsheld P, Bleichrodt RJ, Menke H, Stam H, Stark J, Wösten HAB, Dijksterhuis J (2013a) Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 74:59–70

    Google Scholar 

  • Van Leeuwen MR, Wyatt TT, Golovina EA, Stam H, Menke H, Dekker A, Stark J, Wösten HAB, Dijksterhuis J (2013b) Germinating conidia, transcriptomes and antifungals. Stud Mycol 74:71–85

    Google Scholar 

  • Vinnere-Pettersson O, Leong SL, Lantz H, Rice T, Dijksterhuis J, Houbraken J, Samson RA, Schnürer J (2011) Phylogeny and intraspecific variation of the extreme xerophile, Xeromyces bisporus. Fungal Biol 115:1100–1111

    Google Scholar 

  • Wang X, Beno-Moualem D, Kobiler I, Leikin-Frenkel A, Lichter A, Prusky D (2004) Expression of Δ12 fatty acid desaturase during the induced accumulation of the antifungal dienen in avocado fruits. Mol Plant Pathol 5:575–585

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Yamaguchi M, Sanemitsu Y, Tarnai Y (1991) Characterisation of plasma membrane protonATPase from salt-tolerant yeast Zygosaccharomyces rouxii cells. Yeast 7:599–606

    CAS  Google Scholar 

  • Watanabe Y, Miwa S, Tarnai Y (1995) Characterization of Na+/H(+)-antiporter gene closely related salt-tolerance of yeast Zygosaccharomyces rouxii. Yeast 11:829–838

    PubMed  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 68:209–217

    Google Scholar 

  • Wildman JD, Clark PB (1947) Some examples of the occurrence of machinery slime in caning factories. J Ass Off Anal Chem 30:582–585

    CAS  Google Scholar 

  • Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–3308

    PubMed  CAS  Google Scholar 

  • Williams B, Kabbage M, Kim H-J, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defences by manipulating the host redox environment. PLoS Pathog 7:e1002107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dijksterhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dijksterhuis, J., Houbraken, J., Samson, R.A. (2013). 2 Fungal Spoilage of Crops and Food. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_2

Download citation

Publish with us

Policies and ethics