Skip to main content

Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs)

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

We present an implementation of parallel GPU-accelerated GPAW, a density-functional theory (DFT) code based on grid based projector-augmented wave method. GPAW is suitable for large scale electronic structure calculations and capable of scaling to thousands of cores. We have accelerated the most computationally intensive components of the program with CUDA. We will provide performance and scaling analysis of our multi-GPU-accelerated code staring from small systems up to systems with thousands of atoms running on GPU clusters. We have achieved up to 15 times speed-ups on large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 35109 (2005)

    Article  Google Scholar 

  2. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Møller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Nørskov, J.K., Puska, M., Rantala, T.T., Schiøtz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter 22(25), 253202 (2010)

    Article  Google Scholar 

  3. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: Top500 supercomputer sites (November 2012), http://www.top500.org/lists/2012/11/ (accessed December 5, 2012)

  4. Harju, A., Siro, T., Canova, F.F., Hakala, S., Rantalaiho, T.: Computational Physics on Graphics Processing Units. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 3–26. Springer, Heidelberg (2013)

    Google Scholar 

  5. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  Google Scholar 

  6. Yasuda, K.: Accelerating density functional calculations with graphics processing unit. Journal of Chemical Theory and Computation 4(8), 1230–1236 (2008)

    Article  Google Scholar 

  7. Yasuda, K.: Two-electron integral evaluation on the graphics processor unit. Journal of Computational Chemistry 29(3), 334–342 (2008)

    Article  Google Scholar 

  8. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. Journal of Chemical Theory and Computation 4(2), 222–231 (2008)

    Article  Google Scholar 

  9. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. Journal of Chemical Theory and Computation 5(4), 1004–1015 (2009)

    Article  Google Scholar 

  10. Asadchev, A., Allada, V., Felder, J., Bode, B.M., Gordon, M.S., Windus, T.L.: Uncontracted Rys quadrature implementation of up to G functions on graphical processing units. Journal of Chemical Theory and Computation 6(3), 696–704 (2010)

    Article  Google Scholar 

  11. Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.F., Neelov, A., Goedecker, S.: Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures. The Journal of Chemical Physics 131(7), 34103 (2009)

    Article  Google Scholar 

  12. Maintz, S., Eck, B., Dronskowski, R.: Speeding up plane-wave electronic-structure calculations using graphics-processing units. Computer Physics Communications 182(7), 1421–1427 (2011)

    Article  Google Scholar 

  13. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T., Fleurat-Lessard, P.: Accelerating VASP electronic structure calculations using graphic processing units. Journal of Computational Chemistry (2012) n/a–n/a

    Google Scholar 

  14. Spiga, F., Girotto, I.: phiGEMM: A CPU-GPU library for porting Quantum ESPRESSO on hybrid systems. In: 2012 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 368–375 (February 2012)

    Google Scholar 

  15. Wang, L., Wu, Y., Jia, W., Gao, W., Chi, X., Wang, L.W.: Large scale plane wave pseudopotential density functional theory calculations on GPU clusters. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 71:1–71:10. ACM, New York (2011)

    Google Scholar 

  16. Jia, W., Cao, Z., Wang, L., Fu, J., Chi, X., Gao, W., Wang, L.W.: The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Computer Physics Communications 184(1), 9–18 (2013)

    Article  Google Scholar 

  17. Andrade, X., Alberdi-Rodriguez, J., Strubbe, D.A., Oliveira, M.J.T., Nogueira, F., Castro, A., Muguerza, J., Arruabarrena, A., Louie, S.G., Aspuru-Guzik, A., Rubio, A., Marques, M.A.L.: Time-dependent density-functional theory in massively parallel computer architectures: the octopus project. Journal of Physics: Condensed Matter 24, 233202 (2012)

    Article  Google Scholar 

  18. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  19. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  20. Parr, R., Yang, W.: Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, USA (1994)

    Google Scholar 

  21. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wood, D., Zunger, A.: A new method for diagonalising large matrices. Journal of Physics A: Mathematical and General 18(9), 1343 (1999)

    Article  MathSciNet  Google Scholar 

  23. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  24. Briggs, E.L., Sullivan, D.J., Bernholc, J.: Real-space multigrid-based approach to large-scale electronic structure calculations. Physical Review B 54, 14362–14375 (1996)

    Article  Google Scholar 

  25. NVIDIA Corp: Whitepaper: NVIDIA’s next generation CUDA compute architecture: Fermi, http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf (accessed October 20, 2012)

  26. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel Computing 38(3), 157–174 (2012)

    Article  Google Scholar 

  27. NVIDIA Corp: CUDA parallel computing platform, http://www.nvidia.com/object/cuda_home_new.html (accessed October 14, 2012)

  28. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pp. 79–84. ACM, New York (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakala, S., Havu, V., Enkovaara, J., Nieminen, R. (2013). Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs). In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics