Abstract
The multi-objective firm expansion problem on competitive facility location model, and an evolutionary algorithm suitable to solve multi-objective optimization problems are reviewed in the paper. Several strategies to parallelize the algorithm utilizing both the distributed and shared memory parallel programing models are presented. Results of experimental investigation carried out by solving the competitive facility location problem using up to 2048 processing units are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hotelling, H.: Stability in competition. Economic Journal 39, 41–57 (1929)
Eiselt, H., Laporte, G.: Sequential location problems. European Journal of Operational Research 96, 217–231 (1996)
Eiselt, H., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography. Transportation Science 27(1), 44–54 (1993)
Plastria, F.: Static Competitive Facility Location: An Overview of Optimisation Approaches. European Journal of Operational Research 129(3), 461–470 (2001)
Sáiz, M.E., Hendrix, E.M.T., Fernández, J., Pelegrín, B.: On a branch-and-bound approach for a Huff-like Stackelberg location problem. OR Spectrum 31, 679–705 (2009)
Tóth, B., Fernández, J., Pelegrín, B., Plastria, F.: Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Journal of Operational Research 36(5), 1393–1405 (2009)
Huff, D.L.: Defining and estimating a trade area. Journal of Marketing 28, 34–38 (1964)
Huff, D.L.: A programmed solution for approximating an optimum retail location. Land Economics 42, 293–303 (1966)
Drezner, T.: Locating a single new facility among existing unequally attractive facilities. Journal Regional Science 34(2), 237–252 (1994)
Plastria, F.: Profit maximising single competitive facility location in the plane. Studies in Locational Analysis 11, 115–126 (1997)
Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Mathematical Programming 100, 247–265 (2004)
Redondo, J.L., Fernández, I.G., Ortigosa, P.: Heuristics for the facility location and design (1j1)-centroid problem on the plane. Computational Optimization and Applications 45(1), 111–141 (2010)
Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1995)
Mitra, K., Deb, K., Gupta, S.K.: Multiobjective Dynamic Optimization of an Industrial Nylon 6 Semibatch Reactor Using Genetic Algorithms. Journal of Applied Polymer Science 69(1), 69–87 (1998)
Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic Algorithm Design of pareto-optimal Broad Band Microwave Absorbers. IEEE Transactions on Electromagnetic Compatibility 38(4), 518–525 (1996)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)
Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches to parallelize NSGA-II. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 14–18 (2008)
Coello, C.C., Lamont, G.B., Veldhuizen, D.A. (eds.): Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. (2007)
Lančinskas, A., Žilinskas, J.: Approaches to Parallelize pareto Ranking in NSGA-II Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lančinskas, A., Żilinskas, J. (2013). Solution of Multi-Objective Competitive Facility Location Problems Using Parallel NSGA-II on Large Scale Computing Systems. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-36803-5_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36802-8
Online ISBN: 978-3-642-36803-5
eBook Packages: Computer ScienceComputer Science (R0)