Abstract
Systems which are narrow banded and strictly diagonally dominant by rows can be solved in parallel using a variety of methods including incomplete block cyclic reduction. We show how to accelerate the algorithm by approximating the very first step. We derive tight estimates for the forward error and explain why our procedure is suitable for linear systems obtained by discretizing some common parabolic PDEs. An improved ScaLAPACK style algorithm is presented together with strong scalability results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: A Comparison of Parallel Solvers for Diagonally Dominant and General Narrow-Banded Linear Systems II. In: Amestoy, P., Berger, P., Daydé, M., Duff, I., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1078–1087. Springer, Heidelberg (1999)
Mikkelsen, C.C.K., Manguoglu, M.: Analysis of the truncated Spike algorithm. SIAM J. Matrix Analysis Applications 30, 1500–1519 (2008)
Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM 12, 95–113 (1965)
Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. SIAM Journal on Numerical Analysis 13, 484–496 (1976)
Kjelgaard Mikkelsen, C.C., Kågström, B.: Incomplete Cyclic Reduction of Banded and Strictly Diagonally Dominant Linear Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 80–91. Springer, Heidelberg (2012)
Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the Spike algorithm. Parallel Computing 32, 177–194 (2006)
Manguoglu, M., Sameh, A.H., Schenk, O.: PSPIKE: A Parallel Hybrid Sparse Linear System Solver. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 797–808. Springer, Heidelberg (2009)
Hokpunna, A.: Compact fourth order scheme for numerical simulations of Navier-Stokes equations. PhD thesis, Technische Universität München (2009)
Sun, X.-H., Sun, H.Z., Ni, L.M.: Parallel algorithms for solution of tridiagonal systems on multicomputers. In: Proceedings of the 3rd International Conference on Supercomputing, ICS 1989, pp. 303–312. ACM, New York (1989)
Sun, X.H.: Application and accuracy of the parallel diagonal dominant algorithm. Parallel Computing 21, 1241–1267 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mikkelsen, C.C.K., Kågström, B. (2013). Approximate Incomplete Cyclic Reduction for Systems Which Are Tridiagonal and Strictly Diagonally Dominant by Rows. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-36803-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36802-8
Online ISBN: 978-3-642-36803-5
eBook Packages: Computer ScienceComputer Science (R0)