Skip to main content

Approximate Incomplete Cyclic Reduction for Systems Which Are Tridiagonal and Strictly Diagonally Dominant by Rows

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

Systems which are narrow banded and strictly diagonally dominant by rows can be solved in parallel using a variety of methods including incomplete block cyclic reduction. We show how to accelerate the algorithm by approximating the very first step. We derive tight estimates for the forward error and explain why our procedure is suitable for linear systems obtained by discretizing some common parabolic PDEs. An improved ScaLAPACK style algorithm is presented together with strong scalability results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: A Comparison of Parallel Solvers for Diagonally Dominant and General Narrow-Banded Linear Systems II. In: Amestoy, P., Berger, P., Daydé, M., Duff, I., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1078–1087. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Mikkelsen, C.C.K., Manguoglu, M.: Analysis of the truncated Spike algorithm. SIAM J. Matrix Analysis Applications 30, 1500–1519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM 12, 95–113 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. SIAM Journal on Numerical Analysis 13, 484–496 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kjelgaard Mikkelsen, C.C., Kågström, B.: Incomplete Cyclic Reduction of Banded and Strictly Diagonally Dominant Linear Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 80–91. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the Spike algorithm. Parallel Computing 32, 177–194 (2006)

    Article  MathSciNet  Google Scholar 

  7. Manguoglu, M., Sameh, A.H., Schenk, O.: PSPIKE: A Parallel Hybrid Sparse Linear System Solver. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 797–808. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Hokpunna, A.: Compact fourth order scheme for numerical simulations of Navier-Stokes equations. PhD thesis, Technische Universität München (2009)

    Google Scholar 

  9. Sun, X.-H., Sun, H.Z., Ni, L.M.: Parallel algorithms for solution of tridiagonal systems on multicomputers. In: Proceedings of the 3rd International Conference on Supercomputing, ICS 1989, pp. 303–312. ACM, New York (1989)

    Google Scholar 

  10. Sun, X.H.: Application and accuracy of the parallel diagonal dominant algorithm. Parallel Computing 21, 1241–1267 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikkelsen, C.C.K., Kågström, B. (2013). Approximate Incomplete Cyclic Reduction for Systems Which Are Tridiagonal and Strictly Diagonally Dominant by Rows. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics