Skip to main content

Valvular heart disease – insufficiencies

  • Chapter
Book cover Three-dimensional Echocardiography
  • 2112 Accesses

Abstract

Valvular insufficiencies are among the most frequent heart diseases [1][2]. Valvular flow regurgitation causes a burden of volume overload to the heart which ultimately leads to progressive heart failure [3][4][5][6]. Improved understanding of the mechanism of valvular regurgitation is of critical importance for diagnostic and therapeutic patient management [7][8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nkomo VT, Gardin JM, Skelton TN et al (2006) Burden of valvular heart diseases: a population-based study. The Lancet 368:1005–1011

    Google Scholar 

  2. Iung B, Baron G, Butchart EG et al (2003) A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J 24:1231–1243

    PubMed  Google Scholar 

  3. Avierinos JF, Gersh BJ, Melton LJ et al (2002) Natural history of asymptomatic mitral valve prolapse in the community. Circulation 106:1355–1361

    PubMed  Google Scholar 

  4. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883

    CAS  PubMed  Google Scholar 

  5. Zile MR (1991) Chronic aortic and mitral regurgitation. Clin Cardiol 9:239–253

    CAS  Google Scholar 

  6. Hetzer R, Dandel M (2011) Early detection of left ventricular dysfunction in patients with mitral regurgitation due to flail leaflet is still a challenge. Eur Heart J 32:665–667

    PubMed  Google Scholar 

  7. Bonow RO, Carabello RA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 48:e1–e148

    PubMed  Google Scholar 

  8. Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33:2451–2496

    PubMed  Google Scholar 

  9. Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764

    CAS  PubMed  Google Scholar 

  10. Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with twodimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    PubMed  Google Scholar 

  11. Lancellotti P, Moura L, Pierard LA et al (2010) European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 11:307–332

    PubMed  Google Scholar 

  12. Grayburn PA, Weissman NJ, Zamorano JL (2012) Quantitation of mitral regurgitation. Circulation 126:2005–2017

    PubMed  Google Scholar 

  13. Lang RM, Mor-Avi V, Sugeng L et al (2006) Three-dimensional echocardio graphy: the benefits of the additional dimension. J Am Coll Cardiol 48:2053–2069

    PubMed  Google Scholar 

  14. Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921

    PubMed  Google Scholar 

  15. Pepi M, Tamborini G, Maltagliati A et al (2006) Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 48:2524–2530

    PubMed  Google Scholar 

  16. Grewal J, Mankad S, Freeman WK et al (2009) Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr 22:34–41

    PubMed  Google Scholar 

  17. Sugeng L, Shernan SK, Salgo IS et al (2008) Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol 52:446–449

    PubMed  Google Scholar 

  18. Sugeng L, Coon P, Weinert L et al (2006) Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr 2006 19:413–421

    PubMed  Google Scholar 

  19. O’Gara P, Sugeng L, Lang R et al (2008) The role of imaging in chronic degenerative mitral regurgitation. JACC Cardiovasc Imaging 1:221–237

    PubMed  Google Scholar 

  20. Carabello BA (2004) Indications for mitral valve surgery. J Cardiovasc Surg (Torino) 45:407–418

    CAS  Google Scholar 

  21. Walther T, Falk V, Mohr FW (2004) Minimally invasive mitral valve surgery. J Cardiovasc Surg (Torino) 45:487–495

    CAS  Google Scholar 

  22. Akins CW, Hilgenberg AD, Buckley MJ et al (1994) Mitral-valve reconstruction versus replacement for degenerative or ischemic mitral regurgitation. Ann Thorac Surg 58:668–676

    CAS  PubMed  Google Scholar 

  23. Seeburger J, Borger MA, Doll N et al (2009) Comparison of outcomes of minimally invasive mitral valve surgery for posterior, anterior and bileaflet prolapse. Eur J Cardiothorac Surg 36:532–548

    PubMed  Google Scholar 

  24. Carpentier A (1983) Cardiac valve surgery - the »French correction«. J Thorac Cardiovasc Surg 86:323–337

    CAS  PubMed  Google Scholar 

  25. Salcedo EE, Quaife RA et al (2009) A framework for systematic characterization of the mitral valve by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 22:1087–1099

    PubMed  Google Scholar 

  26. Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46

    PubMed  Google Scholar 

  27. Perloff JK, Roberts WC (1972) The mitral apparatus. Functional anatomy of mitral regurgitation. Circulation 46:227–239

    CAS  PubMed  Google Scholar 

  28. Carpentier A, Lessana A, Relland JYM et al (1995) The »physio-ring«: an advanced concept in mitral valve annuloplasty. Ann Thorac Surg 60:1177–1186

    CAS  PubMed  Google Scholar 

  29. Carpentier A, Chauvaud S, Fabiani JN et al (1980) Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg 79:338–348

    CAS  PubMed  Google Scholar 

  30. Al-Radi OO, Austin PC, Tu JV et al (2005) Mitral repair versus replacement for ischemic mitral regurgitation. Ann Thorac Surg 79:1260–1267

    PubMed  Google Scholar 

  31. Barlow JB, Pocock WA (1988) Mitral valve billowing and prolapse: perspective at 25 years. Herz 13:227–234

    CAS  PubMed  Google Scholar 

  32. Freed LA, Levy D, Levine RA et al (1999) Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med 341:1–7

    CAS  PubMed  Google Scholar 

  33. Anyanwu AC, Adams DH (2007) Etiologic classification of degenerative mitral valve disease: Barlow's disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg 19:90–96

    PubMed  Google Scholar 

  34. Ling LH, Enriquez-Sarano M, Seward JB et al (1996) Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 335:1417–1423

    CAS  PubMed  Google Scholar 

  35. La CG, Arendar I, Maisano F et al (2011) Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol 107:1365–1374

    Google Scholar 

  36. Ring L, Rana BS, Ho SY, Wells FC (2013) The prevalence and impact of deep clefts in the mitral leaflets in mitral valve prolapse. Eur Heart J Cardiovasc Imaging 14:595–602

    PubMed  Google Scholar 

  37. Foster GP, Isselbacher EM, Rose GA et al (1998) Accurate localization of mitral regurgitant defects using multiplane transesophageal echocardiography. Ann Thorac Surg 65:1025–1031

    CAS  PubMed  Google Scholar 

  38. Mor-Avi V, Sugeng L, Lang RM (2009) Real-time 3-dimensional echocardio graphy: an integral component of the routine echocardiographic examination in adult patients? Circulation 119:314–329

    PubMed  Google Scholar 

  39. Lang RM, Tsang W, Weinert L et al (2011) Valvular heart disease. The value of 3-dimensional echocardiography. J Am Coll Cardiol 58:1933–1944

    PubMed  Google Scholar 

  40. Patel V, Hsiung MC, Nanda NC et al (2006) Usefulness of live/real time three-dimensional transthoracic echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography 23:513–518

    PubMed  Google Scholar 

  41. Sharma R, Mann J, Drummond L et al (2007) The evaluation of real-time 3-dimensional transthoracic echocardiography for the preoperative functional assessment of patients with mitral valve prolapse: a comparison with 2-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 20:934–940

    PubMed  Google Scholar 

  42. Barlow JB, Bosman CK (1966) Aneurysmal protrusion of the posterior leaflet of the mitral valve. An auscultatory-electrocardiographic syndrome. Am Heart J 71:166–178

    CAS  PubMed  Google Scholar 

  43. Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. The Lancet 365:507–518

    Google Scholar 

  44. Tanaka K, Takeda M (2004) Repair of Barlow's mitral valve: to do or not to do. Ann Thorac Surg 78:1879–1880

    PubMed  Google Scholar 

  45. Chandra S, Salgo IS, Sugeng L et al (2011) Characterization of degenerative mitral valve disease using morphologic analysis of real-time threedimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging 4:24–32

    PubMed  Google Scholar 

  46. Fornes P, Heudes D, Fuzellier JF et al (1999) Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency: a histomorphometric study of 130 excised segments. Cardiovasc Pathol 8:81–92

    CAS  PubMed  Google Scholar 

  47. Sugeng L, Shernan SK, Weinert L et al (2008) Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr 21:1347–1354

    PubMed  Google Scholar 

  48. Chikwe J, Adams DH, Su KN et al (2012) Can three-dimensional echocardio graphy accurately predict complexity of mitral valve repair? Eur J Cardiothorac Surg 41:518–524

    PubMed  Google Scholar 

  49. Huang HL, Xie XJ, Fei HW et al (2013) Real-time three-dimensional transesophageal echocardiography to predict artificial chordae length for mitral valve repair. J Cardiothorac Surg 8:137

    Google Scholar 

  50. Chandra S, Salgo IS, Sugeng L et al (2011) A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol 301:H1015–H1024

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Vergnat M, Jassar AS, Jackson BM et al (2011) Ischemic mitral regurgitation: a quantitative three-dimensional echocardiographic analysis. Ann Thorac Surg 91:157–164

    PubMed Central  PubMed  Google Scholar 

  52. Nishimura RA, Schaff HV, Shub C et al (1983) Papillary muscle rupture complicating acute myocardial infarction: analysis of 17 patients. Am J Cardiol 51:373–377

    CAS  PubMed  Google Scholar 

  53. Otsuji Y, Handschumacher MD, Schwammenthal E et al (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008

    CAS  PubMed  Google Scholar 

  54. Hung J, Papakostas L, Tahta SA et al (2003) Mechanism of recurrent ischemic mitral regurgitation post-annuloplasty: Continued LV remodelling as a moving target. Circulation 108:476

    Google Scholar 

  55. Calafiore AM, Gallina S, Di MM et al (2001) Mitral valve procedure in dilated cardiomyopathy: repair or replacement? Ann Thorac Surg 71:1146–1152

    CAS  PubMed  Google Scholar 

  56. Yamauchi T, Taniguchi K, Kuki S et al (2004) Evaluation of the mitral valve leaflet morphology after mitral valve reconstruction with a concept »coaptation length index«. J Card Surg 19:535–538

    PubMed  Google Scholar 

  57. Watanabe N, Ogasawara Y, Yamaura Y et al (2006) Geometric differences of the mitral valve tenting between anterior and inferior myocardial in farction with significant ischemic mitral regurgitation: quantitation by novel software system with transthoracic real-time three-dimensional echocardiography. J Am Soc Echocardiogr 19:71–75

    PubMed  Google Scholar 

  58. Watanabe N, Ogasawara Y, Yamaura Y et al (2005) Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol 45:763–769

    PubMed  Google Scholar 

  59. Song JM, Fukuda S, Kihara T et al (2006) Value of mitral valve tenting volume determined by real-time three-dimensional echocardiography in patients with functional mitral regurgitation. Am J Cardiol 98:1088–1093

    PubMed  Google Scholar 

  60. Yamaura Y, Watanabe N, Ogasawara Y et al (2005) Geometric change of mitral valve leaflets and annulus after reconstructive surgery for ischemic mitral regurgitation: real-time 3-dimensional echocardiographic study. J Thorac Cardiovasc Surg 130:1459–1461

    PubMed  Google Scholar 

  61. Ryan LP, Jackson BM, Parish LM et al (2007) Mitral valve tenting index for assessment of subvalvular remodeling. Ann Thorac Surg 84:1243–1249

    PubMed  Google Scholar 

  62. Yamada R, Watanabe N, Kume T et al (2009) Quantitative measurement of mitral valve coaptation in functional mitral regurgitation: In vivo experimental study by real-time three-dimensional echocardiography. J Cardiol 53:94–101

    PubMed  Google Scholar 

  63. Daniel WG, Flachskampf FA (2006) Infective endocarditis. In: Camm AJ, Lüscher TF, Serruys PW (eds) The ESC textbook of cardiovascular medicine. Blackwell Publishing, Malden, MA, USA, pp 671–684

    Google Scholar 

  64. Click RL, Abel MD, Schaff HV (2000) Intraoperative transesophageal echo cardiography: 5-year prospective review of impact on surgical management. Mayo Clin Proc 75:241–247

    CAS  PubMed  Google Scholar 

  65. Freeman WK, Schaff HV, Khandheria BK et al (1992) Intraoperative evaluation of mitral valve regurgitation and repair by transesophageal echocardio graphy: incidence and significance of systolic anterior motion. J Am Coll Cardiol 20:599–609

    CAS  PubMed  Google Scholar 

  66. Niwa Y, Yoshida K, Akasaka T et al (1996) [Intraoperative assessment of mitral valve plasty by transesophageal echocardiography]. J Cardiol 28:155–159

    CAS  PubMed  Google Scholar 

  67. Kronzon I, Sugeng L, Perk G et al (2009) Real-time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol 2009 53:1543–1547

    PubMed  Google Scholar 

  68. Maffessanti F, Marsan NA, Tamborini G et al (2011) Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study. J Am Soc Echocardiogr 24:405–413

    PubMed  Google Scholar 

  69. Sinha A, Kasliwal RR, Nanda NC et al (2004) Live three-dimensional trans thoracic echocardiographic assessment of isolated cleft mitral valve. Echocardiography 21:657–661

    PubMed  Google Scholar 

  70. Kuperstein R, Feinberg MS, Carasso S et al (2006) The added value of real-time 3-dimensional echocardiography in the diagnosis of isolated cleft mitral valve in adults. J Am Soc Echocardiogr 19:811–814

    PubMed  Google Scholar 

  71. Anwar AM, McGhie JS, Meijboom FJ, Ten Cate FJ (2008) Double orifice mitral valve by real-time three-dimensional echocardiography. Eur J Echocardiogr 9:731–732

    PubMed  Google Scholar 

  72. Buck T, Plicht B, Erbel R (2006) [Current recommendations on echocardiographic evaluation of the severity of mitral regurgitation: standardization and practical application using a scoring system]. Herz 31:30–37

    PubMed  Google Scholar 

  73. Yoganathan AP, Cape EG, Sung HW et al (1988) Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol 12:1344–1353

    CAS  PubMed  Google Scholar 

  74. Mascherbauer J, Rosenhek R, Bittner B et al (2005) Doppler echocardiographic assessment of valvular regurgitation severity by measurement of the vena contracta: an in vitro validation study. J Am Soc Echocardiogr 18:999–1006

    PubMed  Google Scholar 

  75. Baumgartner H, Schima H, Kuhn P (1991) Value and limitations of proximal jet dimensions for the quantitation of valvular regurgitation: an in vitro study using Doppler flow imaging. J Am Soc Echocardiogr 4:57–66

    CAS  PubMed  Google Scholar 

  76. Fehske W, Omran H, Manz M et al (1994) Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274

    CAS  PubMed  Google Scholar 

  77. Mele D, Vandervoort PM, Palacios IF (1995) Proximal jet size by Doppler color flow mapping predicts severity of mitral regurgitation: clinical studies. Circulation 91:746–754

    CAS  PubMed  Google Scholar 

  78. Hall SA, Brickner ME, Willett DL (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642

    CAS  PubMed  Google Scholar 

  79. Schwammenthal E, Chen C, Benning F (1994) Dynamics of mitral regurgitant flow and orifice area - physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    CAS  PubMed  Google Scholar 

  80. Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743

    PubMed  Google Scholar 

  81. Buck T, Plicht B, Kahlert P, Erbel R (2013) Understanding the asymmetrical vena contracta area: the difficult relationship between 2D and 3D measurements. JACC Cardiovasc Imaging 6:744

    Google Scholar 

  82. Little SH, Pirat B, Kumar R et al (2008) Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging 1:695–704

    PubMed Central  PubMed  Google Scholar 

  83. Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983

    PubMed Central  PubMed  Google Scholar 

  84. Hyodo E, Iwata S, Tugcu A et al (2012) Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 5:669–676

    PubMed  Google Scholar 

  85. Thavendiranathan P, Phelan D, Thomas JD et al (2012) Quantitative assessment of mitral regurgitation: validation of new methods. J Am Coll Cardiol 60:1470–1483

    PubMed  Google Scholar 

  86. Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637

    PubMed  Google Scholar 

  87. Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252

    PubMed  Google Scholar 

  88. Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 2010 3:694–700

    PubMed  Google Scholar 

  89. Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513

    PubMed Central  PubMed  Google Scholar 

  90. Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778

    PubMed  Google Scholar 

  91. Plicht B, Kahlert P, Goldwasser R et al (2008) Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardio graphy using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr 2008 21:1337–1346

    PubMed  Google Scholar 

  92. Skaug TR, Hergum T, Amundsen BH et al (2010) Quantification of mitral regurgitation using high pulse repetition frequency three-dimensional color Doppler. J Am Soc Echocardiogr 23:1–8

    PubMed  Google Scholar 

  93. Recusani F, Bargiggia GS, Yoganathan AP et al (1991) A new method for quantification of regurgitant flow rate using color flow imaging of the flow convergence region proximal to a discrete orifice: an vitro study. Circulation 83:594–604

    CAS  PubMed  Google Scholar 

  94. Utsunomiya T, Ogawa T, Doshi R et al (1991) Doppler color flow »proximal isovelocity surface area« method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17:1103–1111

    CAS  PubMed  Google Scholar 

  95. Buck T, Jansen CHP, Yoganathan AP et al (1998) Hemisphere Versus Hemiellipse: When Is Each Most Accurate for Proximal Isovelocity Calculation of Regurgitant Flows. (abstr). J Am Coll Cardiol 31:385

    Google Scholar 

  96. Yosefy C, Levine RA, Solis J et al (2007) Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20:389–396

    PubMed  Google Scholar 

  97. Matsumura Y, Saracino G, Sugioka K et al (2008) Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 21:1251–1256

    PubMed  Google Scholar 

  98. Ziani AB, Latcu DG, Abadir S et al (2009) Assessment of proximal isovelocity surface area (PISA) shape using three-dimensional echocardiography in a paediatric population with mitral regurgitation or ventricular shunt. Arch Cardiovasc Dis 102:185–191

    PubMed  Google Scholar 

  99. Matsumura Y, Fukuda S, Tran H et al (2008) Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 155:231–238

    PubMed  Google Scholar 

  100. Cobey FC, McInnis JA, Gelfand BJ et al (2012) A method for automating 3-dimensional proximal isovelocity surface area measurement. J Cardiothorac Vasc Anesth 26:507–511

    PubMed  Google Scholar 

  101. Little SH, Igo SR, Pirat B et al (2007) In vitro validation of real-time threedimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 99:1440–1447

    PubMed Central  PubMed  Google Scholar 

  102. Li X, Shiota T, Delabays A et al (1999) Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: An in vitro quantitative flow study. J Am Soc Echocardiogr 12:1035–1044

    CAS  PubMed  Google Scholar 

  103. Quaini A, Canic S, Guidoboni G et al (2011) A Three-Dimensional Computational Fluid Dynamics Model of Regurgitant Mitral Valve Flow: Validation Against in vitro Standards and 3D Color Doppler Methods. Cardiovasc Eng Technol 2:77–89

    PubMed Central  PubMed  Google Scholar 

  104. Grady L, Datta S, Kutter O et al (2011) Regurgitation quantification using 3D PISA in volume echocardiography. Med Image Comput Comput Assist Interv 14:512–519

    PubMed  Google Scholar 

  105. de Agustin JA, , Marcos-Alberca P, , Fernandez-Golfin C et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25:815–823

    Google Scholar 

  106. Thavendiranathan P, Liu S, Datta S et al (2013) Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging 6:125–133

    PubMed  Google Scholar 

  107. Khoury G, Glineur D, Rubay J et al (2005) Functional classification of aortic root/valve abnormalities and their correlation with etiologies and surgical procedures. Curr Opin Cardiol 20:115–121

    PubMed  Google Scholar 

  108. Fang L, Hsiung MC, Miller AP et al (2005) Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography 22:775–781

    PubMed  Google Scholar 

  109. Chin CH, Chen CH, Lo HS (2010) The correlation between three-dimensional vena contracta area and aortic regurgitation index in patients with aortic regurgitation. Echocardiography 27:161–166

    PubMed  Google Scholar 

  110. Ewe SH, Delgado V, van der Geest R et al (2013) Accuracy of threedimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional threedirectional velocity-encoded magnetic resonance imaging. Am J Cardiol 112:560–566

    PubMed  Google Scholar 

  111. Pirat B, Little SH, Igo SR et al (2009) Direct measurement of proximal isovelocity surface area by real-time three-dimensional color Doppler for quantitation of aortic regurgitant volume: an in vitro validation. J Am Soc Echocardiogr 22:306–313

    PubMed Central  PubMed  Google Scholar 

  112. Thomas JD, Liu CM, Flachskampf FA et al (1990) Quantification of jet flow by momentum analysis: an in vitro color Doppler flow study. Circulation 81:247–259

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buck, T. (2015). Valvular heart disease – insufficiencies. In: Buck, T., Franke, A., Monaghan, M. (eds) Three-dimensional Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36799-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36799-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36798-4

  • Online ISBN: 978-3-642-36799-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics