Shrinking the Search Space for Clustered Planarity

  • Markus Chimani
  • Karsten Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

A clustered graph is a graph augmented with a hierarchical inclusion structure over its vertices, and arises very naturally in multiple application areas. While it is long known that planarity—i.e., drawability without edge crossings—of graphs can be tested in polynomial (linear) time, the complexity for the clustered case is still unknown.

In this paper, we present a new graph theoretic reduction which allows us to considerably shrink the combinatorial search space, which is of benefit for all enumeration-type algorithms. Based thereon, we give new classes of polynomially testable graphs and a practically efficient exact planarity test for general clustered graphs based on an integer linear program.

References

  1. 1.
    Angelini, P., Frati, F., Patrignani, M.: Splitting Clusters to Get C-Planarity. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 57–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chimani, M., Gutwenger, C., Jansen, M., Klein, K., Mutzel, P.: Computing Maximum C-Planar Subgraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 114–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discrete Algorithms 4(2), 313–323 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Alg. Appl. 9(3), 391–413 (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Dahlhaus, E.: A Linear Time Algorithm to Recognize Clustered Planar Graphs and Its Parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-Planarity of Extrovert Clustered Graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in C-Planarity Testing of Clustered Graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered Planarity: Embedded Clustered Graphs with Two-Component Clusters. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Jelínek, V., Suchý, O., Tesař, M., Vyskočil, T.: Clustered Planarity: Clusters with Few Outgoing Edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 102–113. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Small clusters in cycles and eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Chimani
    • 1
  • Karsten Klein
    • 2
  1. 1.Faculty of Math. and Comp. Sci.Friedrich-Schiller-University JenaGermany
  2. 2.School of Information TechnologiesThe University of SydneyAustralia

Personalised recommendations