Implementing a Partitioned 2-Page Book Embedding Testing Algorithm

  • Patrizio Angelini
  • Marco Di Bartolomeo
  • Giuseppe Di Battista
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

In a book embedding the vertices of a graph are placed on the “spine” of a “book” and the edges are assigned to “pages” so that edges on the same page do not cross. In the Partitioned 2-page Book Embedding problem egdes are partitioned into two sets E1 and E2, the pages are two, the edges of E1 are assigned to page 1, and the edges of E2 are assigned to page 2. The problem consists of checking if an ordering of the vertices exists along the spine so that the edges of each page do not cross. Hong and Nagamochi [13] give an interesting and complex linear time algorithm for tackling Partitioned 2-page Book Embedding based on SPQR-trees. We show an efficient implementation of this algorithm and show its effectiveness by performing a number of experimental tests. Because of the relationships [13] between Partitioned 2-page Book Embedding and clustered planarity we yield as a side effect an implementation of a clustered planarity testing where the graph has exactly two clusters.

References

  1. 1.
    Angelini, P., Di Bartolomeo, M., Di Battista, G.: Implementing a partitioned 2-page book embedding testing algorithm. CoRR, arXiv:1209.0598v1 (2012)Google Scholar
  2. 2.
    Biedl, T.: Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report RRR 13-98, Rutcor Research Report (1998)Google Scholar
  3. 3.
    Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing Planar Partitions II: HH-Drawings. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Buss, J.F., Shor, P.W.: On the pagenumber of planar graphs. In: STOC 1984, pp. 98–100. ACM (1984)Google Scholar
  5. 5.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: Handbook of Graph Drawing and Visualization: The Open Graph Drawing Framework. CRC-Press (2012)Google Scholar
  6. 6.
    Cortese, P.F., Di Battista, G.: Clustered planarity. In: SoCG 2005, pp. 32–34 (2005)Google Scholar
  7. 7.
    Di Battista, G., Didimo, W.: Handbook of Graph Drawing and Visualization: GDToolkit. CRC-Press (2012)Google Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the Page Number of Upward Planar Directed Acyclic Graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 391–402. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Hong, S., Nagamochi, H.: Two-page book embedding and clustered graph planarity. TR [2009-004], Dept. of Applied Mathematics and Physics, University of Kyoto, Japan (2009)Google Scholar
  14. 14.
    Ollmann, L.T.: On the book thicknesses of various graphs. Cong. Num, vol. VIII, p. 459 (1973)Google Scholar
  15. 15.
    Wood, D.R.: Degree constrained book embeddings. J. of Algorithms 45(2), 144–154 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Yannakakis, M.: Embedding planar graphs in four pages. JCSS 38(1), 36–67 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Marco Di Bartolomeo
    • 1
    • 2
  • Giuseppe Di Battista
    • 1
  1. 1.Dip. di Informatica e AutomazioneRoma Tre UniversityItaly
  2. 2.Italian Inter-University Computing Consortium CASPURItaly

Personalised recommendations