Skip to main content

Time-Space Maps from Triangulations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7704)

Abstract

Time-space maps show travel time as distances on a map. We discuss the case of time-space maps with a single center; here the travel times from a single source location to a number of destinations are shown by their distances. To accomplish this while maintaining recognizability, the input map must be deformed in a suitable manner. We present three different methods and analyze them experimentally.

Keywords

  • Travel Time
  • Delaunay Triangulation
  • Angle Deformation
  • Planar Point Location
  • Delaunay Trian

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, N., Miller, H.: Time-space transformations of geographic space for exploring, analyzing and visualizing transportation systems. J. of Transport Geography 15, 2–17 (2007)

    CrossRef  Google Scholar 

  2. Albers, G., Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points. Int. J. Comput. Geometry Appl. 8(3), 365–380 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Aronov, B., Seidel, R., Souvaine, D.L.: On compatible triangulations of simple polygons. Comput. Geom. 3, 27–35 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear cartograms. Int. J. Comput. Geometry Appl. 20(2), 203–222 (2010)

    MATH  CrossRef  Google Scholar 

  5. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Dorling, D.: Area Cartograms: their Use and Creation. Concepts and Techniques in Modern Geography, vol. 59. Environmental Publications, Norwich (1996)

    Google Scholar 

  7. Dougenik, J., Chrisman, N., Niemeyer, D.: An algorithm to construct continuous area cartograms. Prof. Geographer 37, 75–81 (1985)

    CrossRef  Google Scholar 

  8. Kaiser, C., Walsh, F., Farmer, C.J.Q., Pozdnoukhov, A.: User-Centric Time-Distance Representation of Road Networks. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 85–99. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Keim, D., North, S., Panse, C.: CartoDraw: A fast algorithm for generating contiguous cartograms. IEEE Trans. Visu. and Comp. Graphics 10, 95–110 (2004)

    CrossRef  Google Scholar 

  10. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3), 175–187 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Nöllenburg, M., Wolff, A.: A Mixed-Integer Program for Drawing High-Quality Metro Maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. Olson, J.: Noncontiguous area cartograms. Prof. Geographer 28, 371–380 (1976)

    CrossRef  Google Scholar 

  13. Saalfeld, A.: Joint triangulations and triangulation maps. In: Proc. 3rd ACM Symposium on Computational Geometry, pp. 195–204 (1987)

    Google Scholar 

  14. Shimizu, E., Inoue, R.: A new algorithm for distance cartogram construction. International Journal of Geographical Information Science 23(11), 1453–1470 (2009)

    CrossRef  Google Scholar 

  15. Tobler, W.: Thirty-five years of computer cartograms. Annals of the Assoc. American Cartographers 94(1), 58–71 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bies, S., van Kreveld, M. (2013). Time-Space Maps from Triangulations. In: Didimo, W., Patrignani, M. (eds) Graph Drawing. GD 2012. Lecture Notes in Computer Science, vol 7704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36763-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36763-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36762-5

  • Online ISBN: 978-3-642-36763-2

  • eBook Packages: Computer ScienceComputer Science (R0)