DAGView: An Approach for Visualizing Large Graphs

  • Evgenios M. Kornaropoulos
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

In this paper, we propose a novel visualization framework called DAGView. The aim of DAGView is to produce clear visualizations of directed acyclic graphs in which every edge and the potential existence of a path can be immediately spotted by the user. Several criteria that users identified as important in a layout are met, such as underlying grid, crossings and bends that appear perpendicular. The main algorithm is based on the layout of directed acyclic graphs but can be extended to handle directed graphs with cycles and undirected graphs, taking into account user preferences and/or constraints. Important tasks that are used in user studies are performed efficiently within the DAGView framework.

References

  1. 1.
    Batagelj, V., Brandenburg, F.J., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual Analysis of Large Graphs Using (X, Y)-Clustering and Hybrid Visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011)CrossRefGoogle Scholar
  2. 2.
    Biedl, T., Thiele, T., Wood, D.R.: Three-Dimensional Orthogonal Graph Drawing with Optimal Volume. Algorithmica 44(3), 233–255 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Binucci, C., Didimo, W., Liotta, G., Nonato, M.: Orthogonal drawings of graphs with vertex and edge labels. Journal Comput. Geom. Theory Appl. 32(2), 71–114 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of graphs. Prentice - Hall, New Jersey (1998)Google Scholar
  5. 5.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area Requirement and Symmetry Display of Planar Upward Drawings. Discrete and Comput. Geom. 7(4), 381–401 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dwyer, T., Lee, B., Fisher, D., Inkpen Quinn, K., Isenberg, P., Robertson, G.G., North, C.: A Comparison of User-Generated and Automatic Graph Layouts. IEEE Trans. Vis. Comput. Graph. 15(6), 961–968 (2009)CrossRefGoogle Scholar
  7. 7.
    Elmqvist, N., Do, T.-N., Goodell, H., Henry, N., Fekete, J.-D.: ZAME: Interactive Large-Scale Graph Visualization. In: Proc. of IEEE Pacific Vis., pp. 215–222 (2008)Google Scholar
  8. 8.
    Ghoniem, M., Fekete, J.-D., Castagliola, P.: A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations. In: Proc. of the IEEE Symposium on Information Visualization, pp. 17–24 (2004)Google Scholar
  9. 9.
    Henry, N., Fekete, J.-D.: MatLink: Enhanced Matrix Visualization for Analyzing Social Networks. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007, Part II. LNCS, vol. 4663, pp. 288–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Henry, N., Fekete, J.-D.: MatrixExplorer: a Dual-Representation System to Explore Social Networks. IEEE Trans. on Visualization and Computer Graphics 12, 677–684 (2006)CrossRefGoogle Scholar
  11. 11.
    Huang, E., Korf, R.E.: New improvements in optimal rectangle packing. In: International Joint Conference on Artificial Intelligence, IJCAI 2009, vol. 6, pp. 511–516 (2009)Google Scholar
  12. 12.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: Proc. of Int. Asia Pacific Symposium on Visualization, APVIS, pp. 97–100 (2007)Google Scholar
  13. 13.
    Kornaropoulos, E.M., Tollis, I.G.: Overloaded Orthogonal Drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Kornaropoulos, E.M., Tollis, I.G.: Weak Dominance Drawings for Directed Acyclic Graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 566–568. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Kornaropoulos, E.M.: Dominance Drawing of Non-Planar Graphs, Masters Thesis, Department of Computer Science, University of Crete (2012)Google Scholar
  16. 16.
    Papakostas, A., Tollis, I.G.: Efficient Orthogonal Drawings of High Degree Graphs. Algorithmica 26(1), 100–125 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Papakostas, A., Tollis, I.G.: Algorithms for Area-Efficient Orthogonal Drawings. Computational Geometry Theory and Applications 9(1-2), 83–110 (1998)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Papamanthou, C., Tollis, I.G.: Algorithms for computing a parameterized st-orientation. Theoretical Computer Science 408(2-3), 224–240 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Purchase, H.C., Hoggan, E., Görg, C.: How Important Is the “Mental Map”? – An Empirical Investigation of a Dynamic Graph Layout Algorithm. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Purchase, H.C., Pilcher, C., Plimmer, B.: Graph Drawing Aesthetics-Created by Users, Not Algorithms. IEEE Trans. Vis. Comput. Graph. 18(1), 81–92 (2012)CrossRefGoogle Scholar
  21. 21.
    Purchase, H.C.: Which Aesthetic Has the Greatest Effect on Human Understanding? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Purchase, H.C., Cohen, R.F., James, M.I.: An experimental study of the basis for graph drawing algorithms. J. Exp. Algorithmics (JEA) 2(4) (1997)Google Scholar
  23. 23.
    Tzitzikas, Y., Hainaut, J.L.: On the visualization of large-sized ontologies. In: Proc. of the Workshop on Advanced Visual Interfaces, pp. 99–102 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evgenios M. Kornaropoulos
    • 1
    • 2
  • Ioannis G. Tollis
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Institute of Computer ScienceFoundation for Research and Technology-HellasHeraklionGreece

Personalised recommendations