Drawing Metro Maps Using Bézier Curves

  • Martin Fink
  • Herman Haverkort
  • Martin Nöllenburg
  • Maxwell Roberts
  • Julian Schuhmann
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

The automatic layout of metro maps has been investigated quite intensely over the last few years. Previous work has focused on the octilinear drawing style where edges are drawn horizontally, vertically, or diagonally at 45°. Inspired by manually created curvy metro maps, we advocate the use of the curvilinear drawing style; we draw edges as Bézier curves. Since we forbid metro lines to bend (even in stations), the user of such a map can trace the metro lines easily. In order to create such drawings, we use the force-directed framework. Our method is the first that directly represents and operates on edges as curves.

References

  1. 1.
    Bertault, F.: A Force-Directed Algorithm that Preserves Edge Crossing Properties. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 351–358. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Brandes, U.: Drawing on Physical Analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Wagner, D.: Using graph layout to visualize train connection data. J. Graph Algorithms Appl. 4(3), 135–155 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  6. 6.
    Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps. J. Visual Lang. Comput. 17(3), 203–224 (2006)CrossRefGoogle Scholar
  7. 7.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Visual. Comput. Graphics 17(5), 626–641 (2011)CrossRefGoogle Scholar
  8. 8.
    Ovenden, M.: Metro maps of the world, 2nd edn. Capital Transport Publishing, Harrow Weald (2003)Google Scholar
  9. 9.
    Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Heidelberg (2002)MATHGoogle Scholar
  10. 10.
    Roberts, M.J.: Underground maps unravelled: Explorations in information design. Published by the author, Wivenhoe (2012), http://privatewww.essex.ac.uk/~mjr
  11. 11.
    Roberts, M.J., Newton, E.J., Lagattolla, F.D., Hughes, S., Hasler, M.C.: Objective versus subjective measures of Paris metro map usability: Investigating traditional octolinear versus all-curves schematics. Int. J. Human-Comput. Studies 71, 363–386 (2013)CrossRefGoogle Scholar
  12. 12.
    Stott, J., Rodgers, P., Martínez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Trans. Visual. Comput. Graphics 17(1), 101–114 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, Y.S., Chi, M.T.: Focus+context metro maps. IEEE Trans. Visual. Comput. Graphics 17(12), 2528–2535 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Fink
    • 1
  • Herman Haverkort
    • 2
  • Martin Nöllenburg
    • 3
  • Maxwell Roberts
    • 4
  • Julian Schuhmann
    • 1
  • Alexander Wolff
    • 1
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgGermany
  2. 2.Faculteit Wiskunde en InformaticaTU EindhovenThe Netherlands
  3. 3.Institut für Theoretische InformatikKITGermany
  4. 4.Department of PsychologyUniversity of EssexColchesterU.K.

Personalised recommendations