Drawing Clustered Graphs as Topographic Maps

  • Martin Gronemann
  • Michael Jünger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

The visualization of clustered graphs is an essential tool for the analysis of networks, in particular, social networks, in which clustering techniques like community detection can reveal various structural properties.

In this paper, we show how clustered graphs can be drawn as topographic maps, a type of map easily understandable by users not familiar with information visualization. Elevation levels of connected entities correspond to the nested structure of the cluster hierarchy.

We present methods for initial node placement and describe a tree mapping based algorithm that produces an area efficient layout. Given this layout, a triangular irregular mesh is generated that is used to extract the elevation data for rendering the map. In addition, the mesh enables the routing of edges based on the topographic features of the map.

References

  1. 1.
    Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts. In: Asia-Pacific Symposium on Visualization, pp. 133–140 (2007)Google Scholar
  2. 2.
    Balzer, M., Deussen, O., Lewerentz, C.: Voronoi treemaps for the visualization of software metrics. In: Proceedings of the 2005 ACM Symposium on Software Visualization, pp. 165–172 (2005)Google Scholar
  3. 3.
    De Berg, M., Onak, K., Sidiropoulos, A.: Fat polygonal partitions with applications to visualization and embeddings. CoRR abs/1009.1866 (2010)Google Scholar
  4. 4.
    de Berg, M., Speckmann, B., van der Weele, V.: Treemaps with Bounded Aspect Ratio. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 260–270. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30(2), 136–145 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    CGAL - Computational Geometry Algorithms Library, http://www.cgal.org/
  7. 7.
    Cortese, P.F., Battista, G.D., Moneta, A., Patrignani, M., Pizzonia, M.: Topographic visualization of prefix propagation in the internet. IEEE Trans. Vis. Comput. Graph. 12(5), 725–732 (2006)CrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall (1999)Google Scholar
  9. 9.
    Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor in information visualization: The role of commonsense geomorphology. J. Am. Soc. Inf. Sci. Technol. 61(2), 253–270 (2010)Google Scholar
  10. 10.
    Gansner, E.R., Hu, Y., Kobourov, S.G.: GMap: Visualizing graphs and clusters as maps. In: PacificVis, pp. 201–208. IEEE (2010)Google Scholar
  11. 11.
    Garland, M., Kumar, G.: Visual exploration of complex time-varying graphs. IEEE Transactions on Visualization and Computer Graphics 12, 805–812 (2006)CrossRefGoogle Scholar
  12. 12.
    GDAL - Geospatial Data Abstraction Library, http://gdal.org/
  13. 13.
    GDEA - Graph Drawing E-Print Archive, http://gdea.informatik.uni-koeln.de/
  14. 14.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gronemann, M., Jünger, M., Kriege, N., Mutzel, P.: MolMap: Visualizing molecule libraries as topographic maps. Tech. rep (2012)Google Scholar
  16. 16.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006)CrossRefGoogle Scholar
  17. 17.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd Conference on Visualization 1991, pp. 284–291 (1991)Google Scholar
  18. 18.
    Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles. Computer Graphics Forum 29(3), 853–862 (2010)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)Google Scholar
  21. 21.
    OGDF - Open Graph Drawing Framework, http://www.ogdf.net/
  22. 22.
    Wise, J., Thomas, J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: Spatial analysis and interaction with information from text documents. IEEE Trans. Vis. Comput. Graph., 51–58 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Gronemann
    • 1
  • Michael Jünger
    • 1
  1. 1.Institut für InformatikUniversität zu KölnGermany

Personalised recommendations