Kinetic and Stationary Point-Set Embeddability for Plane Graphs

  • Zahed Rahmati
  • Sue H. Whitesides
  • Valerie King
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

We investigate a kinetic version of point-set embeddability. Given a plane graph G(V,E) where |V| = n, and a set P of n moving points where the trajectory of each point is an algebraic function of constant maximum degree s, we maintain a point-set embedding of G on P with at most three bends per edge during the motion. This requires reassigning the mapping of vertices to points from time to time. Our kinetic algorithm uses linear size, O(nlogn) preprocessing time, and processes O(n2β2s + 2(n)logn) events, each in O(log2n) time. Here, βs(n) = λs(n)/ n is an extremely slow-growing function and λs(n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols.

Keywords

kinetic graph drawing point-set embeddability kinetic algorithm plane graph 

References

  1. 1.
    Abam, M.A., Rahmati, Z., Zarei, A.: Kinetic Pie Delaunay Graph and Its Applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 48–58. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning trees. In: FOCS, pp. 596–605. IEEE Computer Society (1998)Google Scholar
  3. 3.
    Agarwal, P.K., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for closest pair and all nearest neighbors. ACM Trans. Algorithms 5, 4:1–4:37 (2008)Google Scholar
  4. 4.
    Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)Google Scholar
  5. 5.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1997, pp. 747–756. Society for Industrial and Applied Mathematics (1997)Google Scholar
  6. 6.
    Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In: Proceedings of the 28th Symposuim on Computational Geometry, SoCG 2012, pp. 41–50. ACM, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl. 1 (1997)Google Scholar
  9. 9.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chen, C.: Any maximal planar graph with only one separating triangle is hamiltonian. J. Comb. Optim. 7(1), 79–86 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Durocher, S., Mondal, D.: On the Hardness of Point-Set Embeddability. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Giacomo, E.D., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30(1), 1–23 (2005)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. American Mathematical Monthly 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guibas, L.J., Mitchell, J.S.B.: Voronoi Diagrams of Moving Points in the Plane. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Helden, G.: Each maximal planar graph with exactly two separating triangles is hamiltonian. Discrete Applied Mathematics 155(14), 1833–1836 (2007)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane. Discrete & Computational Geometry 11, 51–63 (1994)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Nivasch, G.: Improved bounds and new techniques for Davenport–Schinzel sequences and their generalizations. J. ACM 57, 17:1–17:44 (2010)Google Scholar
  21. 21.
    Rahmati, Z., Zarei, A.: Kinetic Euclidean minimum spanning tree in the plane. Journal of Discrete Algorithms 16, 2–11 (2012)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, New York (2010)MATHGoogle Scholar
  23. 23.
    Tutte, W.: A theorem on planar graphs. Trans. Amer. Math. Soc. 82, 99–116 (1956)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Whitney, H.: A theorem on graphs. Ann. Math. 32, 378–390 (1931)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zahed Rahmati
    • 1
  • Sue H. Whitesides
    • 1
  • Valerie King
    • 1
  1. 1.Department of Computer ScienceUniversity of VictoriaCanada

Personalised recommendations