Skip to main content

Column-Based Graph Layouts

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7704)

Abstract

We consider orthogonal upward drawings of directed acyclic graphs (DAGs) with nodes of uniform width but node-specific height. One way to draw such graphs is to use a layering technique as provided by the Sugiyama framework [10]. However, to avoid drawbacks of the Sugiyama framework we use the layer-free upward crossing minimization algorithm suggested by Chimani et al. and integrate it into the topology-shape-metric (TSM) framework introduced by Tamassia [11]. This in combination with an algorithm by Biedl and Kant [2] lets us generate column-based layouts, i.e., layouts where the plane is divided into uniform-width columns and every node is assigned to a column.

We show that our column-based approach allows to generate visually appealing, compact layouts with few edge crossing and at most four bends per edge. Furthermore, the resulting layouts exhibit a high degree of symmetry and implicitly support edge bundling. We justify our approach by an experimental evaluation based on real-world examples.

Keywords

  • Directed Acyclic Graph
  • Outgoing Edge
  • Incoming Edge
  • Edge Segment
  • Edge Crossing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Betz, G.: Theorie dialektischer Strukturen. Klostermann (2010)

    Google Scholar 

  2. Biedl, T., Kant, G.: A Better Heuristic for Orthogonal Graph Drawings. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 24–35. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  3. Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.M.: Layer-free upward crossing minimization. Journal of Experimental Algorithmics 15 (2010)

    Google Scholar 

  4. Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.M.: Upward planarization layout. Journal of Graph Algorithms and Applications 15(1), 127–155 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and Quasi-upward Drawings with Vertices of Prescribed Size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  6. Doll, C.: Automatic Layout Generation for Argument Maps. Master’s thesis, Karlsruhe Institute of Technology (February 2012)

    Google Scholar 

  7. Eades, P., Tamassia, R.: Algorithms for drawing graphs: An annotated bibliography. Tech. rep., Brown University, Providence, RI, USA (1988)

    Google Scholar 

  8. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31, 601–625 (2002)

    MathSciNet  CrossRef  Google Scholar 

  9. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: IEEE Pacific Visualization Symposium, PacificVIS 2008, pp. 41–46 (2008)

    Google Scholar 

  10. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2), 109–125 (1981)

    MathSciNet  CrossRef  Google Scholar 

  11. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16, 421–444 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Betz, G., Doll, C., Gemsa, A., Rutter, I., Wagner, D. (2013). Column-Based Graph Layouts. In: Didimo, W., Patrignani, M. (eds) Graph Drawing. GD 2012. Lecture Notes in Computer Science, vol 7704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36763-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36763-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36762-5

  • Online ISBN: 978-3-642-36763-2

  • eBook Packages: Computer ScienceComputer Science (R0)