Circle-Representations of Simple 4-Regular Planar Graphs

  • Michael A. Bekos
  • Chrysanthi N. Raftopoulou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

Lovász conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affirmatively answer Lovász’s conjecture, if G is 3-connected, and, (b) we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.

References

  1. 1.
    Biedl, T., Kant, G.: A Better Heuristic for Orthogonal Graph Drawings. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 24–35. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Bollobas, B.: Modern Graph Theory. Springer (1998)Google Scholar
  3. 3.
    Broersma, H., Duijvestijn, A., Göbel, F.: Generating all 3-connected 4-regular planar graphs from the octahedron graph. J. of Graph Theory 17(5), 613–620 (1993)MATHCrossRefGoogle Scholar
  4. 4.
    Chernobelskiy, R., Cunningham, K., Goodrich, M., Kobourov, S.G., Trott, L.: Force-Directed Lombardi-Style Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 310–321. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing Trees with Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi Drawings of Graphs. J. of Graph Algorithms and Applications 16(1), 85–108 (2011)CrossRefGoogle Scholar
  7. 7.
    Erdos, P., Renyi, A., Sos, V.T.: Combinatorial theory and its applications. North-Holland, Amsterdam (1970)Google Scholar
  8. 8.
    Hlinený, P.: Classes and recognition of curve contact graphs. J. of Combinatorial Theory, Series B 74(1), 87–103 (1998)MATHCrossRefGoogle Scholar
  9. 9.
    Hlinený, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Mathematics 229(1-3), 101–124 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physikalische Klasse 88, 141–164 (1936)Google Scholar
  11. 11.
    Lehel, J.: Generating all 4-regular planar graphs from the graph of the octahedron. J. of Graph Theory 5(4), 423–426 (1981)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Leighton, F.T.: New lower bound techniques for VLSI. In: 22nd Ann. IEEE Symp. on Foundations of Computer Science, pp. 1–12. IEEE (1981)Google Scholar
  13. 13.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: 21st Ann. IEEE Symp. on Foundations of Computer Science, vol. 1547, pp. 270–281. IEEE (1980)Google Scholar
  14. 14.
    Manca, P.: Generating all planar graphs regular of degree four. J. of Graph Theory 3(4), 357–364 (1979)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. of Computing 16, 421–444 (1987)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Tamassia, R., Tollis, I.: Planar grid embedding in linear time. IEEE Transactions on Circuits and Systems (1989)Google Scholar
  17. 17.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transaction on Computers 30(2), 135–140 (1981)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    West, D.B.: Introduction to Graph Theory. Prentice Hall (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Chrysanthi N. Raftopoulou
    • 2
  1. 1.Institute for InformaticsUniversity of TübingenGermany
  2. 2.School of Applied Mathematical & Physical SciencesNational Technical University of AthensGreece

Personalised recommendations