Planar Lombardi Drawings for Subcubic Graphs

  • David Eppstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

We prove that every planar graph with maximum degree three has a planar drawing in which the edges are drawn as circular arcs that meet at equal angles around every vertex. Our construction is based on the Koebe–Andreev–Thurston circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under Möbius transformations, defined using three-dimensional hyperbolic geometry. We also use circle packing to construct planar Lombardi drawings of a special class of 4-regular planar graphs, the medial graphs of polyhedral graphs, and we show that not every 4-regular planar graph has a planar Lombardi drawing. We have implemented our algorithm for 3-connected planar cubic graphs.

References

  1. 1.
    Bern, M., Eppstein, D.: Optimal Möbius Transformations for Information Visualization and Meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 14–25. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R.: Hyperbolic geometry. In: Levy, S. (ed.) Flavors of Geometry. MSRI Publications, vol. 31, pp. 59–115. Cambridge Univ. Press, Cambridge (1997)Google Scholar
  3. 3.
    Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-Directed Lombardi-Style Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25(3), 233–256 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Tamassia, R.: Incremental planarity testing. In: 30th Symp. Foundations of Computer Science, pp. 436–441. IEEE (1989)Google Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-Line Graph Algorithms with SPQR-Trees. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Došlić, T.: On some structural properties of fullerene graphs. J. Math. Chem. 31(2), 187–195 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and Poly-arc Lombardi Drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 308–319. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing Trees with Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph. Algorithms & Appl. 16(1), 85–108 (2012)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Eppstein, D.: Quasiconvex programming. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. MSRI Publications, vol. 52, pp. 287–331. Cambridge Univ. Press, Cambridge (2005)Google Scholar
  12. 12.
    Eppstein, D.: The graphs of planar soap bubbles (2012), preprint arXiv:1207.3761Google Scholar
  13. 13.
    Eppstein, D., Dillencourt, M.B.: Uninscribable 4-regular polyhedron. Electronic Geometry Models, 2003.08.001 (2003), http://www.eg-models.de/2003.08.001/
  14. 14.
    Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra. In: 26th Symp. Comput. Geom., pp. 429–438. ACM (2010)Google Scholar
  15. 15.
    Grinberg, È.J.: Plane homogeneous graphs of degree three without Hamiltonian circuits. In: Latvian Math. Yearbook 4, pp. 51–58. Izdat. “Zinatne”, Riga (1968)Google Scholar
  16. 16.
    Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kimberling, C.: Triangle Centers and Central Triangles. Utilitas Math. (1998)Google Scholar
  19. 19.
    Löffler, M., Nöllenburg, M.: Planar Lombardi drawings of outerpaths (2012) (manuscript)Google Scholar
  20. 20.
    Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Markström, K.: Extremal graphs for some problems on cycles in graphs. Congr. Numerantium 171, 179–192 (2004)MATHGoogle Scholar
  22. 22.
    Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1-3), 257–263 (1993)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Pootheri, S.K.: Decomposition characterizations of classes of 2-connected graphs. In: 39th Southeast Conf. ACM (2001)Google Scholar
  24. 24.
    Schwerdtfeger, H.: Geometry of Complex Numbers: Circle Geometry, Moebius Transformation, Non-Euclidean Geometry. Dover (1979)Google Scholar
  25. 25.
    Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press (2005)Google Scholar
  26. 26.
    Tutte, W.T.: On Hamiltonian circuits. J. London Math. Soc. 21(2), 98–101 (1946)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations