Open Rectangle-of-Influence Drawings of Non-triangulated Planar Graphs

  • Soroush Alamdari
  • Therese Biedl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)

Abstract

A straight line drawing of a graph is an open weak rectangle-of-influence (RI) drawing if there is no vertex in the relative interior of the axis parallel rectangle induced by the end points of each edge. Despite recent interest of the graph drawing community in rectangle-of-influence drawings, no algorithm is known to test whether a graph has a planar open weak RI-drawing.

In a recent paper, we showed how to test, for inner-triangulated planar graphs, whether they have a planar open weak RI-drawing with a non-aligned frame, i.e., the graph obtained from removing the interior of every filled triangle is drawn such that no two vertices have the same coordinate. In this paper, we generalize this to all planar graphs with a fixed planar embedding, even if some interior faces are not triangles. On the other hand, we show that if the planar embedding is not fixed, then deciding if a given planar graph has an open weak RI-drawing is NP-complete. NP-completeness holds even for open weak RI-drawings with non-aligned frames.

Keywords

Proximity drawings Rectangle-of-Influence drawings Angular labeling 

References

  1. 1.
    Alamdari, S., Biedl, T.: Planar Open Rectangle-of-Influence Drawings with Non-aligned Frames. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 14–25. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall (1998), http://www.cs.brown.edu/~rt/gdbook.html
  3. 3.
    Biedl, T., Bretscher, A., Meijer, H.: Rectangle of Influence Drawings of Graphs without Filled 3-Cycles. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 359–368. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Biedl, T.C., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cornelsen, S., Karrenbauer, A.: Accelerated Bend Minimization. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 111–122. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. J. Graph Algorithms Appl. 8(2), 161–177 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawability problem. Comput. Geom. 10(1), 1–22 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. Int. J. Comput. Geometry Appl. 16(2-3), 249–270 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Miura, K., Matsuno, T., Nishizeki, T.: Open rectangle-of-influence drawings of inner triangulated plane graphs. Discrete & Computational Geometry 41(4), 643–670 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Miura, K., Nishizeki, T.: Rectangle-of-influence drawings of four-connected plane graphs. In: Asia-Pacific Symposium on Information Visualization (APVIS). CRPIT, vol. 45, pp. 75–80 (2005)Google Scholar
  12. 12.
    Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)Google Scholar
  13. 13.
    Sadasivam, S., Zhang, H.: Closed rectangle-of-influence drawings for irreducible triangulations. Comput. Geom. Theory Appl. 44(1), 9–19 (2011), http://dx.doi.org/10.1016/j.comgeo.2010.07.001 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tamassia, R.: Handbook of graph drawing and visualization (discrete mathematics and its applications), online draft available at http://www.cs.brown.edu/~rt/gdhandbook/
  15. 15.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987), http://dx.doi.org/10.1137/0216030 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhang, H., Vaidya, M.: On open rectangle-of-influence and rectangular dual drawings of plane graphs. Discrete Mathematics, Algorithms and Applications 1(3), 319–333 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soroush Alamdari
    • 1
  • Therese Biedl
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations