Advertisement

Simulation Configuration Modeling of Distributed Communication Systems

  • Mihal Brumbulli
  • Joachim Fischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7744)

Abstract

Simulation is the method of choice for the analysis of distributed communication systems. This is because of the complexity that often characterizes such systems. But simulation modeling is not a simple task mainly because there exists no unified approach that can provide description means for all aspects of the system. These aspects include architecture, behavior, communication, and configuration. In this paper we focus on simulation configuration as part of our unified modeling approach based on the Specification and Description Language Real Time (SDL-RT). Deployment diagrams are used to describe the simulation setup of the components and configuration values of a distributed system. We provide tool support for automatic implementation of the models for the ns-3 network simulation library.

Keywords

Simulation modeling SDL-RT ns-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Telecommunication Union (ITU): Z.100 series, Specification and Description Language, http://www.itu.int/rec/T-REC-Z.100/en
  2. 2.
    OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.4.1. Tech. rep., Object Management Group (2011)Google Scholar
  3. 3.
    Kuhn, T., Geraldy, A., Gotzhein, R., Rothländer, F.: ns+SDL – The Network Simulator for SDL Systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 103–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Breslau, L., Estrin, D., Fall, K.R., Floyd, S., Heidemann, J.S., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in Network Simulation. IEEE Computer 33(5), 59–67 (2000)CrossRefGoogle Scholar
  5. 5.
    Brumbulli, M., Fischer, J.: SDL Code Generation for Network Simulators. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 144–155. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 Project Goals. In: Proceeding from the 2006 Workshop on ns-2 – the IP Network Simulator (WNS2 2006), article 13. ACM Press (2006)Google Scholar
  7. 7.
    Dietrich, I., Dressler, F., Schmitt, V., German, R.: SYNTONY: Network Protocol Simulation Based on Standard-Conform UML 2 Models. In: 2nd International Conference on Performance Evaluation Methodologies and Tools (ValueTools 2007), ICST, article 21 (2007)Google Scholar
  8. 8.
    Varga, A., Hornig, R.: An Overview of the OMNeT++ Simulation Environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques (Simutools 2008), ICST, article 60 (2008)Google Scholar
  9. 9.
    Estrin, D., Handley, M., Heidemann, J.S., McCanne, S., Xu, Y., Yu, H.: Network Visualization with Nam, the VINT Network Animator. IEEE Computer 33(11), 63–68 (2000)CrossRefGoogle Scholar
  10. 10.
    SDL-RT Consortium: Specification and Description Language - Real Time. Version 2.2, http://www.sdl-rt.org/standard/V2.2/html/SDL-RT.htm
  11. 11.
    Ahrens, K., Eveslage, I., Fischer, J., Kühnlenz, F., Weber, D.: The Challenges of Using SDL for the Development of Wireless Sensor Networks. In: Reed, R., Bilgic, A., Gotzhein, R. (eds.) SDL 2009. LNCS, vol. 5719, pp. 200–221. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Blunk, A., Brumbulli, M., Eveslage, I., Fischer, J.: Modeling Real-time Applications for Wireless Sensor Networks using Standardized Techniques. In: SIMULTECH 2011 - Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 161–167. SciTePress (2011)Google Scholar
  13. 13.
    Fischer, J., Redlich, J.P., Zschau, J., Milkereit, C., Picozzi, M., Fleming, K., Brumbulli, M., Lichtblau, B., Eveslage, I.: A Wireless Mesh Sensing Network for Early Warning. Journal of Network and Computer Applications 35(2), 538–547 (2012)CrossRefGoogle Scholar
  14. 14.
    Fleming, K., Picozzi, M., Milkereit, C., Kühnlenz, F., Lichtblau, B., Fischer, J., Zulfikar, C., Ozel, O., et al.: The Self-organizing Seismic Early Warning Information Network (SOSEWIN). Seismological Research Letters 80(5), 755–771 (2009)CrossRefGoogle Scholar
  15. 15.
    Schaible, P., Gotzhein, R.: Development of Distributed Systems with SDL by Means of Formalized APIs. In: Reed, R., Reed, J. (eds.) SDL 2003. LNCS, vol. 2708, pp. 158–158. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Milic, B., Malek, M.: NPART - Node Placement Algorithm for Realistic Topologies in Wireless Multihop Network Simulation. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques (SimuTools 2009), ICST, arricle 9 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mihal Brumbulli
    • 1
  • Joachim Fischer
    • 1
  1. 1.Institut für InformatikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations