Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN

  • Artiom Alhazov
  • Rudolf Freund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


Membrane systems (with symbol objects) are distributed controlled multiset processing systems. Non-cooperative P systems with either promoters or inhibitors (of weight not restricted to one) are known to be computationally complete. In this paper we show that the power of the deterministic subclass of such systems is computationally complete in the sequential mode, but only subregular in the asynchronous mode and in the maximally parallel mode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Sburlan, D.: Ultimately Confluent Rewriting Systems. Parallel Multiset–Rewriting with Permitting or Forbidding Contexts. In: Mauri, G., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  3. 3.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theor. Comp. Sci. 330, 251–266 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Freund, R., Kogler, M., Oswald, M.: A General Framework for Regulated Rewriting Based on the Applicability of Rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Ibarra, O.H., Yen, H.-C.: Deterministic catalytic systems are not universal. Theor. Comp. Sci. 363, 149–161 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kudlek, M., Martín-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)Google Scholar
  8. 8.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  9. 9.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  10. 10.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer (1997)Google Scholar
  11. 11.
    The P Systems Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Rudolf Freund
    • 3
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  3. 3.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations