A Case-Study on the Influence of Noise to Log-Gain Principles for Flux Dynamic Discovery

  • Tanvir Ahmed
  • Garrett DeLancy
  • Andrei Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


In this paper we show problems associated with the log-gain procedure [13] for determining flux-dynamics from time series by means of applying noise to the data sets. We illustrate this by first creating a set of flux functions and using these flux functions to derive a time series which we then apply Gaussian noise to [7]. This perturbed time series is then used in the log-gain procedure to determine flux-dynamics. The error from the two sets of flux functions is found to be extremely large for signal-to-noise ratios of less than about 25. To further illustrate the disparity in the results, we use these derived flux functions to discover new time series. We show that the log-gain procedure is very susceptible to noise, and that for it to be of practical use with data collect in vivo it must be made much more robust.


Time Series Gaussian Noise Time Series Data Noisy Data Flux Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertalanffy, L.: General system theory. 9. Braziller, New York (1984)Google Scholar
  2. 2.
    Castellini, A.: Algorithm and Software for Biological MP Modeling by Statistical and Optimization Techniques. Universit‘a degli Studi di Verona (2010)Google Scholar
  3. 3.
    Deane, C.M., Salwiaski, A., Xenarios, I., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics: MCP 1, 349–356 (2002)CrossRefGoogle Scholar
  4. 4.
    Franco, G., Manca, V., Pagliarini, R.: Regulation and Covering Problems in MP Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 242–251. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Science 372, 165–182 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fontana, F., Manca, V.: Predator-prey dynamics in P systems ruled by metabolic algorithm. Bio Systems 91, 545–557 (2008)CrossRefGoogle Scholar
  7. 7.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  8. 8.
    Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclinand cdc2 kinase. Proceedings of the National Academy of Sciences 88, 9107–9111 (1991)CrossRefGoogle Scholar
  9. 9.
    Hassani, H., Amiri, S., et al.: The efficiency of noise reduction for curve fitting in growth curve models. Umea: Centre of Biostochastics, Swedish University of Agricultural Sciences (2008)Google Scholar
  10. 10.
    Hong, S., Cui, X., Li, S., June, N.C.T., Kwack, K., Kim, H.: Noise removal for multi-echo MR images using global enhancement. In: 2010 IEEE International Conference on Systems Man and Cybernetics, SMC, pp. 3616–3621 (2010)Google Scholar
  11. 11.
    Jost, J.: Dynamical systems examples of complex behaviour. Springer, Berlin (2005)zbMATHGoogle Scholar
  12. 12.
    Lestas, I., Vinnicombe, G., Paulsson, J.: Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010)CrossRefGoogle Scholar
  13. 13.
    Manca, V.: Log-gain Principles for Metabolic P Systems. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 585–605. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Manca, V.: Topics and problems in metabolic P systems. In: Gutierrez-Naranjo, M.A., Paun, G., Riscos-Nunez, A., Romero-Campero, F.J. (eds.) Proc. of the Fourth Brainstorming Week on Membrane Computing, BWMC4, Fenix Editora, pp. 173–183 (2006)Google Scholar
  15. 15.
    Manca, V., Bianco, L.: Biological networks in metabolic P systems. Bio Systems 91, 489–498 (2008)CrossRefGoogle Scholar
  16. 16.
    Manca, V., Castellini, A., Giuditta, F., Marchetti, L., Pagliarini, R.: MetaPlab 1.2 User Guide (2010)Google Scholar
  17. 17.
    von Mering, C., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRefGoogle Scholar
  18. 18.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Păun, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Păun, G.: Membrane computing: an introduction. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Segel, L.: Design principles for the immune system and other distributed autonomous systems. Oxford University Press, Oxford (2001)Google Scholar
  22. 22.
    Voit, E.: Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Cambridge University Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tanvir Ahmed
    • 1
  • Garrett DeLancy
    • 1
  • Andrei Păun
    • 1
    • 2
  1. 1.Department of Computer ScienceLouisiana Tech UniversityRustonUSA
  2. 2.Bioinformatics DepartmentNational Institute of Research and Development for Biological SciencesBucharestRomania

Personalised recommendations