Advertisement

Membrane Systems and Hypercomputation

  • Mike Stannett
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

We present a brief analysis of hypercomputation and its relationship to membrane systems theory, including a re-evaluation of Turing’s analysis of computation and the importance of timing structure, and suggest a ‘cosmological’ variant of tissue P systems that is capable of super-Turing behaviour. No prior technical background in hypercomputation theory is assumed.

Keywords

Membrane System Timing Structure Timelike Curve Program Counter Close Timelike Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H., Németi, I., Székely, G.: Closed Timelike Curves in Relativistic Computation (2012), arXiv:1105.0047 [gr-qc]Google Scholar
  2. 2.
    Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier, Amsterdam (2000)zbMATHGoogle Scholar
  3. 3.
    Beggs, E.J., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles. Proc. Royal Society, Series A 464, 2777–2801 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Gheorghe, M.: Tissue and Population P Systems. In: Pǎun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, pp. 227–250. OUP, Oxford (2010)Google Scholar
  5. 5.
    Calude, C.S., Pǎun, G.: Bio-steps beyond turing. BioSystems 77, 175–194 (2004)CrossRefGoogle Scholar
  6. 6.
    Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical Clocks and Relativity. Science, 1630–1633 (September 24, 2010)Google Scholar
  7. 7.
    Earman, J., Norton, J.: Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes. Philosophy of Science 5, 22–42 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920)Google Scholar
  9. 9.
    Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-times. Int. J. Theoretical Physics 41, 341–370 (2002), arXiv:gr-qc/0104023v2zbMATHCrossRefGoogle Scholar
  10. 10.
    Gheorghe, M., Stannett, M.: Membrane system models for super-Turing paradigms. Natural Computing 11, 253–259 (2012)CrossRefGoogle Scholar
  11. 11.
    Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. The Astrophysical Journal 692, 1075–1109 (2009)CrossRefGoogle Scholar
  12. 12.
    van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical Logic, pp. 1879–1931. Harvard University Press, Cambridge (1977)Google Scholar
  13. 13.
    Hod, S.: On the instability regime of the rotating Kerr spacetime to massive scalar perturbations (2012), arXiv:1205.1872v1 [gr-qc]Google Scholar
  14. 14.
    Laplace, P.S.: A Philosophical Essay on Probabilities. Dover Publications, New York (1951); translated into English from the original French 6th ed. by F. W. Truscott and F. L. EmoryzbMATHGoogle Scholar
  15. 15.
    Majaess, D.: Concerning the Distance to the Center of the Milky Way and its Structure. Acta Astronomica 60(1), 55–74 (2010)Google Scholar
  16. 16.
    Penrose, R.: Structure of spacetime. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle rencontres, pp. 121–235. W.A. Benjamin, New York (1968)Google Scholar
  17. 17.
    Richard, J.: Les Principes des Mathématiques et le Problème des Ensembles. Revue Générale des Sciences Pures et Appliquées (June 30, 1905)Google Scholar
  18. 18.
    Stannett, M.: The case for hypercomputation. Applied Mathematics and Computation 178, 8–24 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Stannett, M.: Computation and Spacetime Structure. Int. J. Unconventional Computing (in press, 2013), special Issue on New Worlds of Computation 2011Google Scholar
  20. 20.
    Thomson, J.F.: Tasks and Super-Tasks. Analysis 15(1), 1–13 (1954)Google Scholar
  21. 21.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., Series 2 42, 230–265 (submitted May 1936) (1937) CrossRefGoogle Scholar
  22. 22.
    Turing, A.M.: Systems of Logic Based on Ordinals. Proc. London Math. Soc., Series 2 45, 161–228 (1939)CrossRefGoogle Scholar
  23. 23.
    Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xia, Z.: The existence of noncollision singularies in Newtonian systems. Annals of Mathematics 135, 411–468 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mike Stannett
    • 1
  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUnited Kingdom

Personalised recommendations