Skip to main content

Turing Computability and Membrane Computing

  • Conference paper
  • 730 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7762))

Abstract

Alan Turing began a new area in science; he discovered that there are universal computers, which in principal are very simple. Up to now this is the basis of a modern computing theory and practice. In the paper one considers Turing computability in the frame of P (membrane) systems and other distributive systems. An overview of the recent results about small universal P and DNA systems and some open problems and possible directions of investigation are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  2. Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular Post Machines and P Systems with Exo-insertion and Deletion. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small Universal TVDH and Test Tube Systems. International Journal of Foundations of Computer Science 22(1), 143–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine Universal Circular Post Machines. Computer Science Journal of Moldova 10, 3(30), 247–262 (2002)

    MathSciNet  Google Scholar 

  6. Alhazov, A., Rogozhin, Y., Verlan, S.: A Small Universal Splicing P System. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 95–102. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Alhazov, A., Rogozhin, Y., Verlan, S.: On Small Universal Splicing Systems. Fundamenta Informaticae (in press)

    Google Scholar 

  8. Alhazov, A., Verlan, S.: Minimization Strategies for Maximally Parallel Multiset Rewriting Systems. TUCS Report No. 862 (2008), and arXiv:1009.2706v1 [cs.FL], and Theoretical Computer Science 412, 1581–1591 (2011)

    Google Scholar 

  9. Cocke, J., Minsky, M.: Universality of Tag Systems with P = 2. Journal of the Association for Computing Machinery 11(1), 15–20 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csuhaj-Varjú, E., Kari, L., Păun, G.: Test Tube Distributed Systems Based on Splicing. Computers and Artificial Intelligence 15(2–3), 211–232 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G., Verlan, S.: Small Computationally Complete Symport/Antiport P systems. Theoretical Computer Science 372(2-3), 152–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csuhaj-Varjú, E., Verlan, S.: On Length-Separating Test Tube Systems. Natural Computing 7(2), 167–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freund, R., Alhazov, A., Rogozhin, Y., Verlan, S.: Communication P Systems. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, ch. 5, pp. 118–143 (2010)

    Google Scholar 

  14. Freund, F., Freund, R.: Test Tube Systems: When Two Tubes are Enough. In: Rozenberg, G., Thomas, W. (eds.) Developments in Language Theory, Foundations, Applications and Perspectives, pp. 338–350. World Scientific Publishing Co., Singapore (2000)

    Google Scholar 

  15. Frisco, P., Zandron, C.: On Variants of Communicating Distributed H Systems. Fundamenta Informaticae 48(1), 9–20 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Frisco, P.: Computing with Cells: Advances in Membrane Computing. Oxford University Press (2009)

    Google Scholar 

  17. Head, T.: Formal Language Theory and DNA: An Analysis of the Generative Capacity of Recombinant Behaviors. Bulletin of Mathematical Biology 49, 737–759 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Head, T., Păun, G., Pixton, D.: Language Theory and Molecular Genetics. Generative Mechanisms Suggested by DNA Recombination. In: [41], ch. 7, vol. 2

    Google Scholar 

  19. Korec, I.: Small Universal Register Machines. Theoretical Computer Science 168, 267–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lipton, R.J.: DNA Solution of Hard Computational Problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  21. Margenstern, M.: Frontier Between Decidability and Undecidability: A Survey. Theoretical Computer Science 231(2), 217–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Margenstern, M.: Surprising Areas in the Quest for Small Universal Devices. Electronic Notes in Theoretical Computer Science 225, 201–220 (2009)

    Article  Google Scholar 

  23. Margenstern, M., Pavlotskaya, L.: On the Optimal Number of Instructions for Universality of Turing Machines Connected with a Finite Automaton. International Journal of Algebra and Computation 13(2), 133–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Margenstern, M., Rogozhin, Y.: A universal time-varying distributed H system of degree 1. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 371–380. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-Varying Distributed H Systems of Degree 2 Can Carry Out Parallel Computations. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 326–336. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Chen, J., Reif, J.H. (eds.): DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  27. Margenstern, M., Verlan, S., Rogozhin, Y.: Time-varying distributed H systems: an overview. Fundamenta Informaticae 64, 291–306 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Minsky, M.: Computation, Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  29. De Mol, L.: Tag Systems and Collatz-like Functions. Theoretical Computer Science 390, 92–101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neary, T., Woods, D.: The Complexity of Small Universal Turing Machines: A Survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Pavlotskaya, L.: Solvability of the Halting Problem for Certain Classes of Turing Machines. Mathematical Notes 13(6), 537–541 (1973); Translated from Matematicheskie Zametki 13(6), 899–909 (1973)

    Article  MATH  Google Scholar 

  32. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000); Also TUCS Report No. 208 (1998)

    Article  Google Scholar 

  33. Păun, G., Yokomori, T.: Membrane Computing Based on Splicing. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 217–232. American Mathematical Society (1999)

    Google Scholar 

  34. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  35. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)

    Google Scholar 

  36. Post, E.L.: Formal Reductions of the General Combinatorial Decision Problem. American Journal of Mathematics 65(2), 197–215 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  37. Priese, L., Rogozhin, Y., Margenstern, M.: Finite H-systems with 3 Test Tubes are not Predictable. In: Altman, R., Dunker, A., Hanter, L., Klein, T. (eds.) Proceedings of Pacific Simposium on Biocomputing, pp. 545–556. World Sci.Publ., Singapore (1998)

    Google Scholar 

  38. Robinson, R.M.: Minsky’s Small Universal Turing Machine. International Journal of Mathematics 2(5), 551–562 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rogozhin, Y.: Small Universal Turing Machines. Theoretical Computer Science 168(2), 215–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rogozhin, Y., Verlan, S.: On the Rule Complexity of Universal Tissue P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 356–362. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  41. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  42. Shannon, C.E.: A Universal Turing Machines with Two Internal States. Automata Studies, Ann. of Math. Stud. 34, 157–165 (1956)

    MathSciNet  Google Scholar 

  43. Turing, A.M.: On Computable Real Numbers, with an Application to the Entscheidungsproblem. Proc. London Math. Soc. Ser. 2 42, 230–265 (1936)

    Article  Google Scholar 

  44. Verlan, S.: A Boundary Result on Enhanced Time-Varying Distributed H Systems with Parallel Computations. Theoretical Computer Science 344(2-3), 226–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Verlan, S.: Communicating Distributed H Systems with Alternating Filters. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 367–384. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  46. Verlan, S.: Head Systems and Application to Bio-Informatics. PhD thesis, LITA, Université de Metz, Metz, France (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rogozhin, Y., Alhazov, A. (2013). Turing Computability and Membrane Computing. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds) Membrane Computing. CMC 2012. Lecture Notes in Computer Science, vol 7762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36751-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36751-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36750-2

  • Online ISBN: 978-3-642-36751-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics