An Outline of MP Modeling Framework

  • Vincenzo Manca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


MP systems concepts will be revisited, in more general terms, by stressing their special role in solving dynamical inverse problems. Then, a main application of MP systems to Systems Biology will be outlined, which concerns gene expression in breast cancer (in cooperation with Karmanos Cancer Institute, Wayne State University, Detroit MI, USA). From recent experimental results developed at KCI, it follows that MP systems can provide ”good” models of pathological phenomena, where good, in this case, means useful to oncologists. In fact, the MP systems methodology has identified previously unknown intermediaries in a breast cancer cell-specific signaling circuit. This could provide a significant contribution to the task of mapping complete oncogenic signaling networks to improve cancer treatments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aczel, A.D., Sounderpandian, J.: Complete Business Statistics, International Edition. Mc Graw Hill (2006)Google Scholar
  2. 2.
    Bernardini, F., Manca, V.: Dynamical aspects of P systems. Biosystems 70(2), 85–93 (2003)CrossRefGoogle Scholar
  3. 3.
    Bianco, L.: Membrane models of biological systems. PhD Thesis. University of Verona (2007)Google Scholar
  4. 4.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: [9] (2005)Google Scholar
  5. 5.
    Castellini, A., Zucchelli, M., Busato, M., Manca, V.: From time series to biological network regulations. Molecular Biosystems (2012), doi:10.1039/C2MB25191DGoogle Scholar
  6. 6.
    Bianco, L., Manca, V., Marchetti, M., Petterlini, M.: Psim: a simulator for biochemical dynamics based on P systems. In: CEC 2007 - IEEE Congress on Evolutionary Computation, Singapore, September 25-28 (2007)Google Scholar
  7. 7.
    Castellini, A.: Algorithms and software for biological MP modeling by statistical optimization techniques. PhD Thesis. University of Verona (2010)Google Scholar
  8. 8.
    Castellini, A., Franco, G., Manca, V.: Hybrid Functional Petri Nets as MP systems. Natural Computing 9, 61–81 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ciobanu, G., Păun, G., Perez-Jimenez, M.J.: Applications of Membrane Computing. Springer (2005)Google Scholar
  10. 10.
    Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn. John Wiley & Sons, New York (1981)zbMATHGoogle Scholar
  11. 11.
    Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for modelling cellular processes. Natural Computing 9, 457–473 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Science 372, 165–182 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fontana, F., Manca, V.: Predator-prey dynamics in P systems ruled by metabolic algorithm. BioSystems 91, 545–557 (2008)CrossRefGoogle Scholar
  14. 14.
    Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. PNAS 88(20)Google Scholar
  15. 15.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The molecular bases of periodic and chaotic behaviour. Cambridge University Press (1996)Google Scholar
  17. 17.
    Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)CrossRefGoogle Scholar
  18. 18.
    Hocking, R.R.: The Analysis and Selection of Variables in Linear Regression. Biometrics 32 (1976)Google Scholar
  19. 19.
    Hoerl, A.E., Kennard, R.W.: Biased Estimation of Nonorthogonal Problems. Thechnometrics 42(1), Special 40th Anniversary Issue, 80–86 (2000)CrossRefGoogle Scholar
  20. 20.
    Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika 2, 241–254 (1967)CrossRefGoogle Scholar
  21. 21.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall (1989)Google Scholar
  22. 22.
    Manca, V.: String rewriting and metabolism. A logical perspective. In: [46], pp. 36–60 (1998)Google Scholar
  23. 23.
    Manca, V.: The metabolic algorithm: principles and applications. Theoretical Computer Science 404, 142–157 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Manca, V.: Log-Gain Principles for Metabolic P Systems. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 585–605. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Manca, V.: Fundamentals of Metabolic P Systems. In: [49], ch. 19 (2010)Google Scholar
  26. 26.
    Manca, V.: Metabolic P Dynamics. In: [49], ch. 20 (2010)Google Scholar
  27. 27.
    Manca, V.: From P to MP Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 74–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Manca, V.: Metabolic P systems. Scholarpedia 5(3), 9273 (2010)CrossRefGoogle Scholar
  29. 29.
    Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems 91, 489–498 (2008)CrossRefGoogle Scholar
  30. 30.
    Manca, V., Bianco, L., Fontana, F.: Evolution and Oscillation in P Systems: Applications to Biological Phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Manca, V., Franco, G., Scollo, G.: State transition dynamics: basic concepts and molecular computing perspectives. In: Gheorghe, G. (ed.) Molecular Computational Models: Unconventional Approachers, ch. 2, pp. 32–55 (2005)Google Scholar
  32. 32.
    Manca, V., Lombardo, R.: Computing with Multi-membranes. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 282–299. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Manca, V., Marchetti, L.: Metabolic approximation of real periodical functions. The Journal of Logic and Algebraic Programming 79, 363–373 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Manca, V., Marchetti, L.: Goldbeter’s Mitotic Oscillator Entirely Modeled by MP Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 273–284. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Manca, V., Marchetti, L.: Log-Gain Stoichiometic Stepwise regression for MP systems. Int. J. of Foundations of Computer Science 22(1), 97–106 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Marchetti, L., Manca, V.: A Methodology Based on MP Theory for Gene Expression Analysis. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 300–313. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Manca, V., Marchetti, L.: Solving inverse dynamics problems by means of MP systems. BioSystems 109, 78–86 (2012)CrossRefGoogle Scholar
  38. 38.
    Manca, V., Marchetti, L.: An algebraic formulation of inverse problems in MP dynamics. International Journal of Computer Mathematics (2012), doi:10.1080/00207160.2012.735362Google Scholar
  39. 39.
    Manca, V., Marchetti, L., Pagliarini, R.: MP modelling of glucose-insulin interactions in the Intravenous Glucose Tolerance Test. International Journal of Natural Computing Research 2(3), 13–24 (2011)CrossRefGoogle Scholar
  40. 40.
    Manca, V., Martino, M.D.: From String Rewriting to Logical Metabolic Systems. In: Păun, G., Salomaa, A. (eds.) Grammatical Models of Multiagent Systems, pp. 297–315. Gordon and Breach (1999)Google Scholar
  41. 41.
    Manca, V., Pagliarini, R., Zorzan, S.: A photosynthetic process modelled by a metabolic P system. Natural Computing 8, 847–864 (2009)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Marchetti, L., Manca, V.: A Methodology Based on MP Theory for Gene Expression Analysis. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 300–313. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  43. 43.
    Marchetti, L.: MP representations of biological structures and dynamics. PhD Thesis. University of Verona (2012)Google Scholar
  44. 44.
    Marquardt, D.W., Snee, R.D.: Ridge Regression in Practice. The American Statistician 29(1), 3–20 (1975)zbMATHGoogle Scholar
  45. 45.
    Pagliarini, R.: Modeling and reverse engineering of biological phenomena by means of metabolic P systems. PhD Thesis. University of Verona (2011)Google Scholar
  46. 46.
    Păun, G. (ed.): Computing with biomolecules. Theory and Experiments, pp. 36–60. Springer, Singapore (1998)Google Scholar
  47. 47.
    Păun, G.: Computing with Membranes. Journal of Computer and Systems Science 61(1), 108–143 (2000)zbMATHCrossRefGoogle Scholar
  48. 48.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  49. 49.
    Păun, G., Rozenberg, G., Salomaa, A.: Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  50. 50.
    Reising, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Springer (1998)Google Scholar
  51. 51.
    Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology Lectures on Petri Nets. The MIT Press (2006)Google Scholar
  52. 52.
    Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vincenzo Manca
    • 1
  1. 1.University of VeronaItaly

Personalised recommendations