Advertisement

Modelling Ecological Systems with the Calculus of Wrapped Compartments

  • Pablo Ramón
  • Angelo Troina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

The Calculus of Wrapped Compartments is a framework based on stochastic multiset rewriting in a compartmentalised setting originally developed for the modelling and analysis of biological interactions. In this paper, we propose to use this calculus for the description of ecological systems and we provide the modelling guidelines to encode within the calculus some of the main interactions leading ecosystems evolution. As a case study, we model the distribution of height of Croton wagneri, a shrub constituting the endemic predominant species of the dry ecosystem in southern Ecuador. In particular, we consider the plant at different altitude gradients (i.e. at different temperature conditions), to study how it adapts under the effects of global climate change.

Keywords

Arbuscular Mycorrhiza Loop Sequence Trophic Link Atomic Element Altitude Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguirre, Z., Kvist, P., Sánchez, O.: Floristic composition and conservation status of the dry forests in ecuador. Lyonia 8(2) (2005)Google Scholar
  2. 2.
    Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Giovannetti, E., Grassi, E., Sciacca, E., Spinella, S., Troina, A.: CWC Simulator. Dipartimento di Informatica, Università di Torino (2010), http://cwcsimulator.sourceforge.net/
  3. 3.
    Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Sciacca, E., Spinella, S., Torquati, M., Troina, A.: On Parallelizing On-Line Statistics for Stochastic Biological Simulations. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 3–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Aldinucci, M., Coppo, M., Damiani, F., Drocco, M., Torquati, M., Troina, A.: On designing multicore-aware simulators for biological systems. In: Proc. of Intl. Euromicro PDP 2011: Parallel Distributed and Network-Based Processing, pp. 318–325. IEEE Computer Society Press (2011)Google Scholar
  5. 5.
    Aldinucci, M., Torquati, M.: FastFlow website. FastFlow (Octber 2009), http://mc-fastflow.sourceforge.net/
  6. 6.
    Aman, B., Dezani-Ciancaglini, M., Troina, A.: Type disciplines for analysing biologically relevant properties. Electr. Notes Theor. Comput. Sci. 227, 97–111 (2009)CrossRefGoogle Scholar
  7. 7.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochastic calculus of looping sequences for the modelling and simulation of cellular pathways. Transactions on Computational Systems Biology IX, 86–113 (2008)Google Scholar
  8. 8.
    Barbuti, R., Dezani-Ciancaglini, M., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A formalism for the description of protein interaction. Fundam. Inform. 103(1-4), 1–29 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of looping sequences. Theoretical Computer Science 412(43), 5976–6001 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial p systems. Natural Computing 10(1), 3–16 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Barbuti, R., Maggiolo–Schettini, A., Milazzo, P., Troina, A.: The Calculus of Looping Sequences for Modeling Biological Membranes. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 54–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Rossi, E.: Modelling the dynamics of an aedes albopictus population. In: AMCA-POP, vol. 33, pp. 18–36. EPTCS (2010)Google Scholar
  13. 13.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Seasonal variance in p system models for metapopulations. Progress in Natural Science 17(4), 392–400 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with stochastic membrane systems. Biosystems 91(3), 499–514 (2008)CrossRefGoogle Scholar
  15. 15.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: An analysis on the influence of network topologies on local and global dynamics of metapopulation systems. In: AMCA-POP, vol. 33, pp. 1–17. EPTCS (2010)Google Scholar
  16. 16.
    Bioglio, L., Dezani-Ciancaglini, M., Giannini, P., Troina, A.: Typed stochastic semantics for the calculus of looping sequences. Theor. Comp. Sci. 431, 165–180 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bioglio, L., Calcagno, C., Coppo, M., Damiani, F., Sciacca, E., Spinella, S., Troina, A.: A spatial calculus of wrapped compartments. In: MeCBIC, vol. abs/1108.3426. CoRR (2011)Google Scholar
  18. 18.
    Bolker, B.: Ecological models and data in R. Princeton University Press (2008)Google Scholar
  19. 19.
    Calcagno, C., Coppo, M., Damiani, F., Drocco, M., Sciacca, E., Spinella, S., Troina, A.: Modelling spatial interactions in the arbuscular mycorrhizal symbiosis using the calculus of wrapped compartments. In: CompMod 2011, vol. 67, pp. 3–18. EPTCS (2011)Google Scholar
  20. 20.
    Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on p systems. Natural Computing 10(1), 39–53 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cardona, M., Colomer, M.A., Margalida, A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Sanuy, D.: A P System Based Model of an Ecosystem of Some Scavenger Birds. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 182–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.: Modeling Ecosystems Using P Systems: The Bearded Vulture, a Case Study. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC9 2008. LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Caswell, H.: Matrix population models: Construction, analysis and interpretation, 2nd edn. Sinauer Associates, Sunderland (2001)Google Scholar
  24. 24.
    Coppo, M., Damiani, F., Drocco, M., Grassi, E., Guether, M., Troina, A.: Modelling ammonium transporters in arbuscular mycorrhiza symbiosis. Transactions on Computational Systems Biology XIII, 85–109 (2011)CrossRefGoogle Scholar
  25. 25.
    Coppo, M., Damiani, F., Drocco, M., Grassi, E., Sciacca, E., Spinella, S., Troina, A.: Hybrid calculus of wrapped compartments. In: MeCBIC, vol. 40, pp. 103–121. EPTCS (2010)Google Scholar
  26. 26.
    Coppo, M., Damiani, F., Drocco, M., Grassi, E., Sciacca, E., Spinella, S., Troina, A.: Simulation techniques for the calculus of wrapped compartments. Theor. Comp. Sci. 431, 75–95 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Coppo, M., Damiani, F., Drocco, M., Grassi, E., Troina, A.: Stochastic Calculus of Wrapped Compartments. In: QAPL, vol. 28, pp. 82–98. EPTCS (2010)Google Scholar
  28. 28.
    Dezani-Ciancaglini, M., Giannini, P., Troina, A.: A type system for required/excluded elements in CLS. In: DCM 2009, vol. 9, pp. 38–48. EPTCS (2009)Google Scholar
  29. 29.
    Dezani-Ciancaglini, M., Giannini, P., Troina, A.: A type system for a stochastic cls. In: MeCBIC 2009, vol. 11, pp. 91–105. EPTCS (2009)Google Scholar
  30. 30.
    Elton, C.: Animal Ecology. Sidgwick and Jackson (1927)Google Scholar
  31. 31.
    Gentry, A.: A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru): with supplementary notes on herbaceous taxa, Washington DC, Conservation International (1993)Google Scholar
  32. 32.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  33. 33.
    Gutiérrez, J.: Importancia de los Arbustos Leñosos en los Ecosistemas de la IV Región, Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo, vol. 16. Ediciones Universidad de La Serena, Chile (2001)Google Scholar
  34. 34.
    Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15, 237–240 (1969)Google Scholar
  35. 35.
    Lomolino, M.V., Brown, J.W.: Biogeography. Sinauer Associates, Sunderland (1998)Google Scholar
  36. 36.
    Oury, N., Plotkin, G.: Multi-level modelling via stochastic multi-level multiset rewriting. Mathematical Structures in Computer Science (2012)Google Scholar
  37. 37.
    Petrovskii, S., Petrovskaya, N.: Computational ecology as an emerging science. Interface Focus 2(2), 241–254 (2012)CrossRefGoogle Scholar
  38. 38.
    Pianka, E.: On r and k selection. American Naturalist 104(940), 592–597 (1970)CrossRefGoogle Scholar
  39. 39.
    Pielou, E.: Mathematical ecology. Wiley (1977)Google Scholar
  40. 40.
    Pǎun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Pǎun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  42. 42.
    Shiponeni, N., Allsopp, N., Carrick, P., Hoffman, M.: Competitive interactions between grass and succulent shrubs at the ecotone between an arid grassland and succulent shrubland in the karoo. Plant. Ecol. 212(5), 795–808 (2011)CrossRefGoogle Scholar
  43. 43.
    Sugihara, G., May, R.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268), 734–741 (1990)CrossRefGoogle Scholar
  44. 44.
    Takeuchi, Y.: Cooperative systems theory and global stability of diffusion models. Acta Applicandae Mathematicae 14, 49–57 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Thompson, J.: The geographic mosaic of coevolution. University of Chicago Press (2005)Google Scholar
  46. 46.
    Valencia, R., Pitman, N., León-Yánez, S., Jorgensen, P.: Libro Rojo de las Plantas Endémicas del Ecuador. Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito (2000)Google Scholar
  47. 47.
    Verhulst, P.: Notice sur la loi que la population pursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)Google Scholar
  48. 48.
    Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo Ramón
    • 1
  • Angelo Troina
    • 2
  1. 1.Departamento de Ciencias Naturales, Sección EcologíaUniversidad Tecnica Particular de LojaEcuador
  2. 2.Dipartimento di InformaticaUniversità di TorinoItaly

Personalised recommendations