Advertisement

Multigraphical Membrane Systems Revisited

  • Adam Obtułowicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

A concept of a (directed) multigraphical membrane system [21], akin to membrane systems in [23] and [20], for modeling complex systems in biology, evolving neural networks, perception, and brain function is recalled and its new inspiring examples are presented for linking it with object recognition in cortex, an idea of neocognitron for multidimensional geometry, fractals, and hierarchical networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, C.: A city is not a tree. Reprint from the Magazine Design No. 206, Council of Industrial Design (1966)Google Scholar
  2. 2.
    Baas, N.B., Emmeche, C.: On Emergence and Explanation. Intellectica 2(25), 67–83 (1997)Google Scholar
  3. 3.
    Bailly, F., Longo, G.: Objective and Epistemic Complexity in Biology, invited lecture. In: International Conference on Theoretical Neurobiology, New Delhi (February 2003), http://www.di.ens.fr/users/longo
  4. 4.
    Barr, F., Welles, C.: Category Theory for Computing Science, 2nd edn. Prentice–Hall, New York (1990, 1993)Google Scholar
  5. 5.
    Barrière, L., et al.: Deterministic hierarchical networks. Networks (2006) (submitted)Google Scholar
  6. 6.
    Domshlak, C.: On recursively directed hypercubes. Electron. J. Combin. 9, #R23 (2002)MathSciNetGoogle Scholar
  7. 7.
    Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. The Bulletin of Symbolic Logic 3, 401–452 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ehresmann, A.C., Vanbremeersch, J.-P.: Multiplicity Principle and Emergence in Memory Evolutive Systems. SAMS 26, 81–117 (1996)zbMATHGoogle Scholar
  9. 9.
    Ehresmann, A.C., Vanbremeersch, J.-P.: Consciousness as Structural and Temporal Integration of the Context, http://perso.orange.fr/vbm-ehr/Ang/W24A7.htm
  10. 10.
    Ehresmann, A.C., Vanbremeersch, J.-P.: Memory Evolutive Systems. Studies in Multidisciplinarity, vol. 4. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Eroni, S., Harel, D., Cohen, I.R.: Toward Rigorous Comprehension of Biological Complexity: Modeling, Execution, and Visualization of Thymic T-Cell Maturation. Genome Research 13, 2485–2497 (2003)CrossRefGoogle Scholar
  12. 12.
    Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, Hoboken (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1), 1–47 (1991)CrossRefGoogle Scholar
  14. 14.
    Fukushima, K.: Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks 1(2), 119–130 (1988)CrossRefGoogle Scholar
  15. 15.
    Fukushima, K.: Neocognitron trained with winner-kill-loser rule. Neural Networks 23, 926–938 (2010)CrossRefGoogle Scholar
  16. 16.
    Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J.: Fractals and P systems. In: Proc. of 4th BWMC, vol. II, pp. 65–86. Sevilla Univ. (2006)Google Scholar
  17. 17.
    Harel, D.: On Visual Formalisms. Comm. ACM 31, 514–530 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Inseberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and its Applications. Springer, Berlin (2008)Google Scholar
  19. 19.
    Lair, C.: Elements de la theorie des Patchworks. Diagrammes 29 (1993)Google Scholar
  20. 20.
    Membrane computing web page, http://ppage.psystems.eu
  21. 21.
    Obtułowicz, A.: Multigraphical membrane systems: a visual formalism for modeling complex systems in biology and evolving neural networks. In: Preproceedings of Workshop of Membrane Computing, Thessaloniki, pp. 509–512 (2007)Google Scholar
  22. 22.
    Ovchinnikov, S.: Partial cubes: characterizations and constructions. Discrete Mathematics 308, 5597–5621 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Physical Review 67, 026112 (2003)Google Scholar
  25. 25.
    Reisenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 11, 1019–1025 (1999)Google Scholar
  26. 26.
    Seitz, C.L.: The cosmic cube. Comm. ACM 28, 22–33 (1985)CrossRefGoogle Scholar
  27. 27.
    Shin, S.-J.: The Logical Status of Diagrams, Cambridge (1994)Google Scholar
  28. 28.
    Thiel, T.: The design of the connection machine, DesignIssues, vol. 10(1), pp. 5–18. MIT Press, Cambridge (1994), see also http://www.mission-base.com/tamiko/theory/cm_txts/di-frames.html Google Scholar
  29. 29.
    Van Essen, D.C., Maunsell, J.H.R.: Hierarchical organization and functional streams in the visual cortex. Trends in NeuroScience, 370–375 (September 1983)Google Scholar
  30. 30.
    von der Malsburg, C.: Binding in Models of Perception and Brain Function. Current Opinions in Neurobiology 5, 520–526 (1995)CrossRefGoogle Scholar
  31. 31.
    von der Malsburg, C.: The What and Why of Binding: The Modeler’s Perspective. Neuron, 95–104, 94–125 (1999)Google Scholar
  32. 32.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adam Obtułowicz
    • 1
  1. 1.Institute of MathematicsPolish Academy of SciencesWarsawPoland

Personalised recommendations