Advertisement

Membranes with Boundaries

  • Tamás Mihálydeák
  • Zoltán Ernő Csajbók
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

Active cell components involved in real biological processes have to be close enough to a membrane in order to be able to pass through it. Rough set theory gives a plausible opportunity to model boundary zones around cell-like formations. However, this theory works within conventional set theory, and so to apply its ideas to membrane computing, first, we have worked out an adequate approximation framework for multisets. Next, we propose a two–component structure consisting of a P system and an approximation space for multisets. Using the approximation technique, we specify the closeness around membranes, even from inside and outside, via boundaries in the sense of multiset approximations. Then, we define communication rules within the P system in such a way that they operate in the boundary zones solely. The two components mutually cooperate.

Keywords

Approximation of sets rough multisets membrane computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P systems. Natural Computing 10(1), 3–16 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blizard, W.D.: Multiset theory. Notre Dame Journal of Formal Logic 30(1), 36–66 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Blizard, W.D.: The development of multiset theory. Modern Logic 1, 319–352 (1991)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Blizard, W.D.: Dedekind multiset and function shells. Theoretical Computer Science 110(1), 79–98 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing. LNCS, vol. 2235. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Cardelli, L., Gardner, P.: Processes in Space. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Csajbók, Z.: Partial approximative set theory: A generalization of the rough set theory. In: Martin, T., Muda, A.K., Abraham, A., Prade, H., Laurent, A., Laurent, D., Sans, V. (eds.) Proceedings of SoCPaR 2010, Cergy Pontoise / Paris, December 7-10, pp. 51–56. IEEE (2010)Google Scholar
  8. 8.
    Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Computer Science 412(42), 5820–5833 (2011); rough Sets and Fuzzy Sets in Natural ComputingMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of the rough set theory. International Journal of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)Google Scholar
  10. 10.
    Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P Systems Controlled by General Topologies. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 70–81. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Cyran, M., et al.: Oracle Database Concepts, 10g Release 2 (10.2). Oracle (2005), http://docs.oracle.com/cd/B19306_01/server.102/b14220.pdf
  12. 12.
    Dedekind, R.: Essays on the Theory of Numbers. Dover, New York (1963); translated by Beman, W.WGoogle Scholar
  13. 13.
    Girish, P., John, S.J.: Rough multisets and information multisystems. Advances in Decision Sciences 2011, 17 pages (2011)Google Scholar
  14. 14.
    Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, 2nd edn., vol. 2. Addison-Wesley, Reading (1981)Google Scholar
  15. 15.
    Kudlek, M., Martín-Vide, C., Păun, G.: Toward a formal macroset theory. In: Calude, et al. (ed.) [5], pp. 123–134Google Scholar
  16. 16.
    Mihálydeák, T.: Partial First-order Logic with Approximative Functors Based on Properties. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS(LNAI), vol. 7414, pp. 514–523. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Mihálydeák, T., Csajbók, Z.: Membranes with Boundaries. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszi, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 277–294. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  20. 20.
    Pawlak, Z.: Hard and soft sets. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, Proceedings of the International Workshop on Rough Sets and Knowledge Discovery (RSKD 1993), October 12-15, pp. 130–135. Springer, Banff (1994)CrossRefGoogle Scholar
  21. 21.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford Handbooks. Oxford University Press, Inc., New York (2010)Google Scholar
  24. 24.
    Singh, D., Ibrahim, A.M., Yohanna, T., Singh, J.N.: An overview of the applications of multisets. Novi Sad J. Math. 37(2), 73–92 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Syropoulos, A.: Mathematics of multisets. In: Calude, et al. (ed.) [5], pp. 347–358Google Scholar
  26. 26.
    Yager, R.R.: O, the theory of bags. International Journal of General Systems 13(1), 23–37 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tamás Mihálydeák
    • 1
  • Zoltán Ernő Csajbók
    • 2
  1. 1.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  2. 2.Department of Health Informatics, Faculty of HealthUniversity of DebrecenNyíregyházaHungary

Personalised recommendations