Advertisement

The Efficiency of Tissue P Systems with Cell Separation Relies on the Environment

  • Luis F. Macías-Ramos
  • Mario J. Pérez-Jiménez
  • Agustín Riscos-Núñez
  • Miquel Rius-Font
  • Luis Valencia-Cabrera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

The classical definition of tissue P systems includes a distinguished alphabet with the special assumption that its elements are available in an arbitrarily large amount of copies. These objects are shared in a distinguished place of the system, called the environment. This ability of having infinitely many copies of some objects has been widely exploited in the design of efficient solutions to computationally hard problems by means of tissue P systems.

This paper deals with computational aspects of tissue P systems with cell separation where there is no such environment as described above. The main result is that only tractable problems can be efficiently solved by using this kind of P systems. Bearing in mind that NP–complete problems can be efficiently solved by using tissue P systems without environment and with cell division, we deduce that in the framework of tissue P systems without environment, the kind of rules (separation versus division) provides a new frontier of the tractability of decision problems.

Keywords

Membrane Computing Tissue P System Cell Separation Environment of a Tissue Computational Complexity Borderline of Tractability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Oswald, M.: Tissue P Systems with Antiport Rules and Small Numbers of Symbols and Cells. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 100–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems and Cell Division in Population P Systems. Soft Comput. 9(9), 640–649 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Computing. Natural Computing Series. Springer (2006)Google Scholar
  4. 4.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue P Systems with channel states. Theor. Comput. Sci. 330, 101–116 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theor. Comput. Sci. 404(1-2), 76–87 (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Gutiérrez-Naranjo, M.A., Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: A Linear Solution for QSAT with Membrane Creation. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 241–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ito, M., Martín Vide, C., Păun, G.: A characterization of Parikh sets of ET0L laguages in terms of P systems. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups and Transducers, pp. 239–254. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  8. 8.
    Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P Systems with Contextual and Rewriting Rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lakshmanan, K., Rama, R.: On the Power of Tissue P Systems with Insertion and Deletion Rules. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, pp. 304–318 (2003)Google Scholar
  10. 10.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A New Class of Symbolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Martín Vide, C., Pazos, J., Păun, G., Rodríguez Patón, A.: Tissue P systems. Theor. Comput. Sci. 296, 295–326 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Pan, L., Ishdorj, T.-O.: P systems with active membranes and separation rules. J. Univers. Comput. Sci. 10(5), 630–649 (2004)MathSciNetGoogle Scholar
  13. 13.
    Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue–like P systems. J. Complexity 26(3), 296–315 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Prakash, V.J.: On the Power of Tissue P Systems Working in the Maximal-One Mode. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, pp. 356–364 (2003)Google Scholar
  15. 15.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Păun, G.: Attacking NP-complete problems. In: Antoniou, I., Calude, C., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC 2K, pp. 94–115. Springer (2000)Google Scholar
  17. 17.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generat. Comput. 20(3), 295–305 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P Systems with cell division. Int. J. Comput. Commun. 3(3), 295–303 (2008)Google Scholar
  20. 20.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2009)Google Scholar
  21. 21.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. J. Autom. Lang. Combin. 11(4), 423–434 (2006)zbMATHGoogle Scholar
  23. 23.
    Pérez-Jiménez, M.J., Sosík, P.: Improving the efficiency of tissue P systems with cell separation. In: García-Quismondo, M., et al. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, pp. 105–140. Fénix Editora, SevillaGoogle Scholar
  24. 24.
    Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., Romero-Campero, F.J.: The role of the environment in tissue P systems with cell division. In: García-Quismondo, M., et al. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, pp. 89–104. Fénix Editora, SevillaGoogle Scholar
  25. 25.
    Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J.: An optimal frontier of the efficiency of tissue P systems with cell division. In: García-Quismondo, M., et al. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, pp. 141–166. Fénix Editora, SevillaGoogle Scholar
  26. 26.
    Zhang, X., Wang, S., Niu, Y., Pan, L.: Tissue P systems with cell separation: attacking the partition problem. Science China Information Sciences 54(2), 293–304 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis F. Macías-Ramos
    • 1
  • Mario J. Pérez-Jiménez
    • 1
  • Agustín Riscos-Núñez
    • 1
  • Miquel Rius-Font
    • 2
  • Luis Valencia-Cabrera
    • 1
  1. 1.Research Group on Natural Computing Department of Computer Science and Artificial IntelligenceUniversity of SevillaSpain
  2. 2.Department of Applied Mathematics IVUniversitat Politècnica de CatalunyaSpain

Personalised recommendations