Maintenance of Chronobiological Information by P System Mediated Assembly of Control Units for Oscillatory Waveforms and Frequency

  • Thomas Hinze
  • Benjamin Schell
  • Mathias Schumann
  • Christian Bodenstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


Oscillatory signals turn out to be reliable carriers for efficient processing and propagation of information in both spheres, life sciences and engineering. Each living organism typically comprises a variety of inherent biological rhythms whose periodicities cover a widespread range of scales like split seconds, minutes, or hours, and sometimes even months or years. Due to different molecular principles of generation, those rhythms seem to persist independently from each other. Their combination and assembly in conjunction with recurrent environmental changes can lead to astonishing capabilities and evolutionary advantages. Motivated by the question on how populations of cicadas, an insect species living in the soil, sustain a synchronous life cycle of 17 years away from any known external stimulus of this duration, we aim at exploring potential underlying mechanisms by P system mediated assembly of a set of chemical control units. To this end, we identify a collection of core oscillators responsible for sinusoidal, spiking, and plated waveforms along with pass filters, switches, and modulators. Considering these units as genotypic elementary components, we utilise P system control for selection and (re-)assembly of units towards complex phenotypic systems. Two simulation case studies demonstrate the potential of this approach following the idea of artificial evolution. Our first study inspired by the cicadas converts a chemical frequency divider model 1:17 into counterparts of 1:3, 1:5, and 1:6 just by exchange of single units. In the second study adopted from the mammalian circadian clock system residing within the suprachiasmatic nucleus, we illustrate the stabilisation of the overall clock signal by addition of auxiliary core oscillators.


Logical Unit Frequency Divider Reaction Network Suprachiasmatic Nucleus Oscillatory Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belousov, B.P.: A periodic reaction and its mechanism. Compilation of Abstracts in Radiation Medicine 147, 145 (1959)Google Scholar
  2. 2.
    Bequette, B.W.: Process control: modeling, design, and simulation. Prentice Hall (2003)Google Scholar
  3. 3.
    Bernard, S., Gonze, D., Cajavec, B., Herzel, H., Kramer, A.: Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput. Biol. 3(4), e68 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics Workbench: An Integrated in silico Modelling Platform for Systems and Synthetic Biology. Bioinformatics 27(23), 3323–3324 (2011)CrossRefGoogle Scholar
  6. 6.
    Cagnacci, A.: Melatonin in Relation to Physiology in Adult Humans. Journal of Pineal Research 21(4), 200–213 (1996)CrossRefGoogle Scholar
  7. 7.
    Carlson, B.M.: Principles of Regenerative Biology. Elsevier Academic Press (2007)Google Scholar
  8. 8.
    Connors, K.A.: Chemical Kinetics. VCH Publishers (1990)Google Scholar
  9. 9.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  10. 10.
    Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Science 372, 165–182 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gerstner, W., Kistler, W.: Spiking Neuron Models – Single Neurons, Populations, Plasticity. Cambridge University Press (2002)Google Scholar
  12. 12.
    Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Advanced Enzyme Regulation 3, 425–438 (1965)CrossRefGoogle Scholar
  13. 13.
    Hinze, T., Bodenstein, C., Schau, B., Heiland, I., Schuster, S.: Chemical Analog Computers for Clock Frequency Control Based on P Modules. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 182–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register Machine Computations on Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using Mass-Action Kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hinze, T., Lenser, T., Dittrich, P.: A Protein Substructure Based P System for Description and Analysis of Cell Signalling Networks. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Hinze, T., Lenser, T., Escuela, G., Heiland, I., Schuster, S.: Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 316–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Klevecz, R.R.: Quantized generation time in mammalian cells as an expression of the cellular clock. Proc. Natl. Acad. Sci. USA 73, 4012–4016 (1976)CrossRefGoogle Scholar
  18. 18.
    Lengeler, J.W., Drews, G., Schlegel, H.G.: Biology of the Prokaryotes. Thieme (1999)Google Scholar
  19. 19.
    Manca, V.: Metabolic P Systems for Biochemical Dynamics. Progress in Natural Sciences 17(4), 384–391 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Marlatt, C.L.: The periodical cicada. Bull. U.S. Dept. Agri., Div. Entomol. Bull. 18, 52 (1907)Google Scholar
  21. 21.
    Mitchison, J.M.: The Biology of the Cell Cycle. Cambridge University Press (1971)Google Scholar
  22. 22.
    Nath, K., Koch, A.L.: Protein Degradation in Escherichia coli: Measurement of Rapidly and Slowly Decaying Components. The Journal of Biological Chemistry 245(11), 2889–2900 (1970)Google Scholar
  23. 23.
    Panfilov, A.V., Holden, A.V.: Computational Biology of the Heart. John Wiley & Sons (1997)Google Scholar
  24. 24.
    Reiter, R.J.: The Melatonin Rhythm: Both a Clock and a Calendar. Cellular and Molecular Life Sciences 49(8), 654–664 (1993)CrossRefGoogle Scholar
  25. 25.
    Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M., Krasnogor, N.: Modular Assembly of Cell Systems Biology Models using P Systems. International Journal of Foundations of Computer Science 20(3), 427–442 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Tyson, J.J., Novak, B.: Temporal Organization of the Cell Cycle. Current Biology 18, 759–768 (2008)CrossRefGoogle Scholar
  27. 27.
    Williams, K.S., Simon, C.: The ecology, behavior and evolution of periodical cicadas. Annual Review of Entomology 40, 269–295 (1995)CrossRefGoogle Scholar
  28. 28.
    Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase. Biofizika 9, 306–311 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Hinze
    • 1
    • 2
  • Benjamin Schell
    • 2
  • Mathias Schumann
    • 2
  • Christian Bodenstein
    • 2
  1. 1.Institute of Computer Science and Information and Media TechnologyBrandenburg University of TechnologyCottbusGermany
  2. 2.School of Biology and Pharmacy, Department of BioinformaticsFriedrich Schiller University JenaJenaGermany

Personalised recommendations