A New Approach for Solving SAT by P Systems with Active Membranes

  • Zsolt Gazdag
  • Gábor Kolonits
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


In this paper we give two families of P systems with active membranes that can solve the satisfiability problem of propositional formulas in linear time in the number of propositional variables occurring in the input formula. These solutions do not use polarizations of the membranes or non-elementary membrane division but use separation rules with relabeling. The first solution is a uniform one, but it is not polynomially uniform. The second solution, which is based on the first one, is a polynomially semi-uniform solution.


Membrane computing P systems SAT problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A.: Minimal parallelism and number of membrane polarizations. The Computer Science Journal of Moldova 18(2), 149–170 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alhazov, A., Pan, L., Paun, G.: Trading polarizations for labels in P systems with active membranes. Acta Inf. 41(2-3), 111–144 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ciobanu, G., Pan, L., Paun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theor. Comput. Sci. 378(1), 117–130 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Polarizationless P Systems with Active Membranes Working in the Minimally Parallel Mode. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 62–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Gazdag, Z., Kolonits, G.: A New Approach for Solving SAT by P Systems with Active Membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 195–207. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Kusper, G.: Solving and Simplifying the Propositional Satisfiability Problem by Sub-Model Propagation. Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2005)Google Scholar
  7. 7.
    Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes and Separation Rules. Acta Inf. 43(2), 131–145 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Paun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Paun, G.: Introduction to membrane computing. In: Applications of Membrane Computing, pp. 1–42 (2006)Google Scholar
  11. 11.
    Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010), zbMATHCrossRefGoogle Scholar
  12. 12.
    Pérez-Jiménez, M.J., Jiménez, Á.R., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zsolt Gazdag
    • 1
  • Gábor Kolonits
    • 1
  1. 1.Department of Algorithms and Their Applications Faculty of InformaticsEötvös Loránd UniversityHungary

Personalised recommendations