Advertisement

Fast Distributed DFS Solutions for Edge-Disjoint Paths in Digraphs

  • Hossam ElGindy
  • Radu Nicolescu
  • Huiling Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)

Abstract

We present two new synchronous distributed message-based depth-first search (DFS) based algorithms, Algorithms C and D, to compute a maximum cardinality set of edge-disjoint paths, between a source node and a target node in a digraph. We compare these new algorithms with our previous implementation of the classical algorithm, Algorithm A, and our previous improvement, Algorithm B [10]. Empirical results show that, on a set of random digraphs, our algorithms are faster than the classical Algorithm A, by a factor around 40%. All these improved algorithms have been inspired and guided by a P system modelling exercise, but are suitable for any distributed implementation. To achieve the maximum theoretical performance, our P systems specification uses high-level generic rules applied in matrix grammar mode.

Keywords

edge-disjoint paths depth-first search network flow distributed systems P systems generic rules matrix grammars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bălănescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. International Journal of Natural Computing Research 2(2), 1–18 (2011)CrossRefGoogle Scholar
  2. 2.
    Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process. Lett. 26, 301–305 (1988)CrossRefGoogle Scholar
  3. 3.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and vertex-disjoint paths in P modules. In: Ciobanu, G., Koutny, M. (eds.) Workshop on Membrane Computing and Biologically Inspired Process Calculi, pp. 117–136 (2010)Google Scholar
  4. 4.
    Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A Faster P Solution for the Byzantine Agreement Problem. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 175–197. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Freund, R., Păun, G.: A variant of team cooperation in grammar systems. Journal of Universal Computer Science 1(2), 105–130 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring Network Structure, Dynamics, and Function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) 7th Python in Science Conference (SciPy), pp. 11–15 (2008)Google Scholar
  8. 8.
    Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  9. 9.
    Nicolescu, R.: Parallel and Distributed Algorithms in P Systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 35–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Nicolescu, R., Wu, H.: New solutions for disjoint paths in P systems. Natural Computing, 1–15 (2012), doi:10.1007/s11047-012-9342-9Google Scholar
  11. 11.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New York (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hossam ElGindy
    • 1
  • Radu Nicolescu
    • 2
  • Huiling Wu
    • 2
  1. 1.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations