(Tissue) P Systems with Decaying Objects

  • Rudolf Freund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7762)


Objects generated in P systems usually are assumed to survive as long as the computation goes on. In this paper, decaying objects are considered, i.e., objects only surviving a bounded number of computation steps. Variants of (tissue) P systems with decaying objects working in transition modes where the number of rules applied in each computation step is bounded, are shown to be very restricted in their generative power, i.e., if the results are collected in a specified output cell/membrane, then only finite sets of multisets can be generated, and if the results are specified by the objects sent out into the environment, we obtain the regular sets. Only if the decaying objects are regenerated within a certain period of computation steps, i.e., if we allow an unbounded number of rules to be applied, then computational completeness can be obtained, yet eventually more ingredients are needed for the rules than in the case of non-decaying objects, e.g., permitting and/or forbidden contexts. As special variants of P systems, catalytic P systems, P systems using cooperative rules, and spiking neural P systems are investigated.


Transition Mode Computation Step Transition Step Successful Computation Terminal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended Spiking Neural P Systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 123–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of cells and Petri nets. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez, A., Riscos-Núñez, A. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, pp. 33–62 (2007)Google Scholar
  3. 3.
    Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E.: Networks of language processors, pp. 771–790 (2001)Google Scholar
  5. 5.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  6. 6.
    Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999)MathSciNetGoogle Scholar
  7. 7.
    Freund, R.: Transition and Halting Modes in (Tissue) P Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 18–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Freund, R., Ionescu, M., Oswald, M.: Extended spiking neural P systems with decaying spikes and/or total spiking. Int. J. Found. Comput. Sci. 19(5), 1223–1234 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science 330, 251–266 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally or maximally parallel transition mode. Natural Computing 10(2), 821–833 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kudlek, M., Martín-Vide, C., Păun, G.: Toward a Formal Macroset Theory. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying Distributed H Systems with Parallel Computations: the Problem is Solved. In: Chen, J., Reif, J.H. (eds.) DNA9. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)Google Scholar
  16. 16.
    Păun, G.: Computing with membranes. J. of Computer and System Sciences 61(1), 108–143 (1998); and TUCS Research Report 208 (1998), CrossRefGoogle Scholar
  17. 17.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  19. 19.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997)zbMATHCrossRefGoogle Scholar
  20. 20.
    The P Systems Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rudolf Freund
    • 1
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations