Skip to main content
  • 2966 Accesses

Abstract

Symmetry and periodicity determines crystal structure. Crystal systems, Bravais lattices, crystal classes and point groups; space groups, are listed. Schönflies and Herman-Manguin identification. Crystallographic classification, point lattice, Miller Indices. Morphology of crystals. Reciprocal lattices and relevance. Wigner Seitz cell and Brillouin zones, typical examples are given. Extensive discussion of element, binary and ternary semiconductors. Superlattice structures and Brillouin zones, superlattice deposition. Intercalated compounds including typical properties are presented, organic superlattices with examples are discussed. Extensive discussion of amorphous structures, building blocks; relevance of coordination numbers and constraints. Quasi-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A is the face spun between b and c, B between a and c, and C between a and b.

  2. 2.

    There are other modifications possible. For example, seven for Si, of which four are stable at room temperature and ambient pressure (see Landolt and Börnstein 1982a, 1982b; Landolt and Börnstein 1987). Only Si I and a-Si are included in this book. Si III is face-centered cubic and a semimetal; Si IV is hexagonal diamond and is a medium gap semiconductor (see Besson et al. 1987). Wurtzite lattice (CdS) are constructed from two intertwined hexagonal sublattices of Cd and S.

  3. 3.

    The surface of glasses, even at very high magnification, does not show any characteristic structure; after fracture, glasses show no preferred cleavage planes whatsoever.

Bibliography

  • N.Kh. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, Semiconducting II–VI, IV–VI, and V–VI Compounds (Plenum, New York, 1969)

    Google Scholar 

  • D. Adler, in Physical Properties of Amorphous Materials, ed. by D. Adler, B.B. Schwartz, M.C. Steele (Plenum, New York, 1985)

    Chapter  Google Scholar 

  • V.K. Agarwal, Phys. Today 41, 40 (1988)

    Article  Google Scholar 

  • E.K. Arushanov, Prog. Cryst. Growth Charact. 13, 1 (1986)

    Article  Google Scholar 

  • R. Bacewicz, T.F. Ciszek, Appl. Phys. Lett. 52, 1150 (1988)

    Article  Google Scholar 

  • C. Barrett, T.B. Massalski, Structure of Metals (Pergamon Press, New York, 1980)

    Google Scholar 

  • R.J. Bell, P. Dean, Philos. Mag. 25, 1381 (1972)

    Article  Google Scholar 

  • J.E. Bernard, A. Zunger, Phys. Rev. B 37, 6835 (1988)

    Article  Google Scholar 

  • J.M. Besson, E.H. Mokhtari, J. Gonzales, G. Weill, Phys. Rev. Lett. 59, 473 (1987)

    Article  Google Scholar 

  • H.A. Bethe, Proc. R. Soc. A 216, 45 (1935)

    Google Scholar 

  • A. Bienenstock, in Physical Properties of Amorphous Materials, ed. by D. Adler, B.B. Schwartz, M.C. Steele (Plenum, New York, 1985)

    Google Scholar 

  • K.B. Blodgett, J. Am. Chem. Soc. 57, 1007 (1935)

    Article  Google Scholar 

  • P. Boolchand, in Physical Properties of Amorphous Materials, ed. by D. Adler, B.B. Schwartz, M.C. Steele (Plenum, New York, 1985)

    Google Scholar 

  • P.J. Brown, J.B. Forsyth, in The Crystal Structure of Solids (Edward Arnold, London, 1973)

    Google Scholar 

  • M.J. Buerger, Elementary Crystallography (Wiley, New York, 1956)

    Google Scholar 

  • J.W. Cahn, D. Shechtman, D. Gratias, J. Mater. Res. 1, 13 (1986)

    Article  Google Scholar 

  • A.E. Carlson, A. Zunger, D.M. Wood, Phys. Rev. B 32, 1386 (1985)

    Article  Google Scholar 

  • A.A. Chemov, Crystal Growth (Springer, Berlin, 1984)

    Google Scholar 

  • P.D. Dapkus, J. Cryst. Growth 68, 345 (1984)

    Article  Google Scholar 

  • A.T. DiBenedetto, Structure and Properties of Materials (McGraw-Hill, New York, 1967)

    Google Scholar 

  • H. Ehrenreich, Science 235, 1029 (1987)

    Article  Google Scholar 

  • G. Etherington, A.C. Wright, J.T. Wenzel, J.C. Dore, J.H. Clarke, R.N. Sinclair, J. Non-Cryst. Solids 48, 265 (1982)

    Article  Google Scholar 

  • A. Gallagher, J. Appl. Phys. 63, 2406–2413 (1988)

    Article  Google Scholar 

  • A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawabu, I. Hindu, Appl. Phys. Lett. 50, 673 (1987)

    Article  Google Scholar 

  • A.C. Gossard, IEEE J. Quantum Electron. QE 22, 1649 (1986)

    Article  Google Scholar 

  • C.L. Henley, Comments Condens. Matter Phys. 13, 59 (1987)

    Google Scholar 

  • T. Isu, D.-S. Jiang, K. Ploog, Appl. Phys. A 43, 75 (1987)

    Article  Google Scholar 

  • J. Jackie, Rep. Prog. Phys. 49, 171 (1986)

    Article  Google Scholar 

  • J. Jaffe, A. Zunger, Phys. Rev. B 29, 1882–1906 (1984a)

    Article  Google Scholar 

  • R.W. James, The Optical Principles of the Diffraction of X-Rays (Bell & Sons, London, 1954), Chaps. 1, 6, and 8

    Google Scholar 

  • H.R. Jen, M.J. Chemg, G.B. Stringfellow, Appl. Phys. Lett. 48, 1603 (1986)

    Article  Google Scholar 

  • B.A. Joyce, Rep. Prog. Phys. 48, 1637 (1985)

    Article  Google Scholar 

  • M.J. Kelly, R.J. Kelly, Rep. Prog. Phys. 48, 12 (1985)

    Article  Google Scholar 

  • H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures (Wiley, New York, 1974)

    Google Scholar 

  • P. Kramer, R. Neri, Acta Crystallogr. A 40, 580 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • T.S. Kuan, T.F. Kuech, W.I. Wang, E.L. Wilkie, Phys. Rev. Lett. 56, 201 (1985)

    Article  Google Scholar 

  • T.S. Kuan, W.I. Wang, E.L. Wilkie, Phys. Rev. Lett. 51, 51 (1987)

    Google Scholar 

  • K. Kuriyama, F. Nakamura, Phys. Rev. B 36, 4449 (1987)

    Article  Google Scholar 

  • H. Landolt, R. Börnstein, in New Series, III, vol. 22, ed. by O. Madelung, M. Schulz (Springer, Berlin, 1987)

    Google Scholar 

  • H. Landolt, R. Börnstein, in New Series, III, vols. 17a and 17b, ed. by O. Madelung, M. Schulz, H. Weiss (Springer, Berlin, 1982a)

    Google Scholar 

  • H. Landolt, R. Börnstein, in Zahlenwerke und Funktionen aus Naturwissenschaften und Technik, vols. 17a and 17b, ed. by K.H. Hellwege (Springer, Berlin, 1982b)

    Google Scholar 

  • I. Langmuir, Trans. Faraday Soc. 15, 62 (1920)

    Article  Google Scholar 

  • D.I. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984)

    Article  Google Scholar 

  • B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1981)

    Google Scholar 

  • A. Menelle, R. Bellissent, in Proc. Int. Conf. Phys. Semicond., ed. by O. Engström (World Scientific, Stockholm, 1986), p. 1049

    Google Scholar 

  • A. Miller, A. MacKinnon, D. Weaire, in Solid State Physics, vol. 36, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1981)

    Google Scholar 

  • E. Mooser, W.B. Pearson, J. Electron. 1, 629 (1956)

    Google Scholar 

  • N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  • H. Nakayama, H. Fujita, in Gallium Arsenide and Related Compounds, ed. by M. Fujimoto. Inst. Phys. Conf. Ser., vol. 79 (Hilger, Boston, 1985)

    Google Scholar 

  • D.R. Nelson, Sci. Am. 255, 42 (1986)

    Article  Google Scholar 

  • R.E. Newnham, Structure-Property Relations (Springer, New York, 1975)

    Book  Google Scholar 

  • S.R. Ovshinsky, Int. Conf. Struct. Excit. Amorph. Solids, AIP Conf. Proc. 31, 29 (1976a)

    Google Scholar 

  • S.R. Ovshinsky, Phys. Rev. Lett. 36, 1469 (1976b)

    Article  Google Scholar 

  • S.T. Pantelides, Phys. Rev. B 36, 3479 (1987)

    Article  Google Scholar 

  • E. Parthe, Crystal Chemistry of Tetrahedral Structures (Gordon and Breach, New York, 1964)

    Google Scholar 

  • E. Parthe, Christallochimie des Structures Tetraedriques (Gordon and Breach, Paris, 1972)

    Google Scholar 

  • R.E. Peierls, Ann. Inst. Henry Poincare 5, 177 (1935)

    MATH  MathSciNet  Google Scholar 

  • R. Penrose, Bull. - Inst. Math. Appl. 10, 266 (1974)

    Google Scholar 

  • P.M. Petroff, A.C. Gossard, W. Weigmann, A. Savage, J. Cryst. Growth 44, 5 (1978)

    Article  Google Scholar 

  • P.M. Petroff, A.C. Gossard, A. Savage, W. Wiegmann, J. Cryst. Growth 46, 172 (1979)

    Article  Google Scholar 

  • J.C. Phillips, Comments Solid State Phys. 9, 191 (1980)

    Google Scholar 

  • K. Ploog, in Crystal Growth, Properties and Applications, ed. by H.C. Freyhardt (Springer, Berlin, 1980)

    Google Scholar 

  • D.E. Polk, J. Non-Cryst. Solids 5, 365 (1971)

    Article  Google Scholar 

  • W. Richter, in Festkörperprobleme, ed. by P. Grosse. Advances in Solid State Physics, vol. 26 (Friedr. Vieweg & Sohn, Braunschweig, 1986), p. 335

    Google Scholar 

  • G.G. Roberts, Adv. Phys. 34, 475 (1985)

    Article  Google Scholar 

  • L.K. Runnels, J. Math. Phys. 8, 2081 (1967)

    Article  Google Scholar 

  • J.M. Schultz, Diffraction for Material Scientists (Prentice Hall, New York, 1982)

    Google Scholar 

  • J. Shay, J. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Application (Pergamon Press, Oxford, 1974)

    Google Scholar 

  • D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  Google Scholar 

  • J.B. Sokoloff, Phys. Rep. 126, 189 (1985)

    Article  Google Scholar 

  • A.H. Sommer, Photoemissive Materials (Wiley, New York, 1968)

    Google Scholar 

  • G.P. Srivastava, J.L. Martins, A. Zunger, Phys. Rev. B 31, 2561 (1985)

    Article  Google Scholar 

  • P.J. Steinhardt, Science 238, 1242 (1987)

    Article  Google Scholar 

  • J. Todd, R. Merlin, R. Clarke, K.M. Mohatny, J.D. Axe, Phys. Rev. Lett. 57, 1157 (1986)

    Article  Google Scholar 

  • M.T.F. von Laue, in Röntgenstrahlinterferenzen, vol. 3 (Akademische Verlagsgesellschaft, Frankfurt, 1960). Chap. 5

    Google Scholar 

  • D. Waire, M.F. Ashby, J. Logan, M. Weins, Acta Metall. 19, 779 (1971)

    Article  Google Scholar 

  • B.E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, 1969). Chap. 14

    Google Scholar 

  • A.F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984)

    Google Scholar 

  • M.S. Whittingham, A.J. Jacobson (eds.), Intercalation Chemistry (Academic Press, New York, 1982)

    Google Scholar 

  • D.M. Wood, A. Zunger, Phys. Rev. Lett. 61, 1501 (1988)

    Article  Google Scholar 

  • W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932)

    Article  Google Scholar 

  • W.H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Dover, New York, 1967)

    Google Scholar 

  • A. Zunger, Int. J. Quant. Chem. 19, 629 (1986a)

    Google Scholar 

  • A. Zunger, in Solid State Physics, vol. 39, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1986b), p. 275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böer, K.W. (2013). Crystal Structure. In: Handbook of the Physics of Thin-Film Solar Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36748-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36748-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36747-2

  • Online ISBN: 978-3-642-36748-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics