Advertisement

Structural Counter Abstraction

  • Kshitij Bansal
  • Eric Koskinen
  • Thomas Wies
  • Damien Zufferey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7795)

Abstract

Depth-Bounded Systems form an expressive class of well-structured transition systems. They can model a wide range of concurrent infinite-state systems including those with dynamic thread creation, dynamically changing communication topology, and complex shared heap structures. We present the first method to automatically prove fair termination of depth-bounded systems. Our method uses a numerical abstraction of the system, which we obtain by systematically augmenting an over-approximation of the system’s reachable states with a finite set of counters. This numerical abstraction can be analyzed with existing termination provers. What makes our approach unique is the way in which it exploits the well-structuredness of the analyzed system. We have implemented our work in a prototype tool and used it to automatically prove liveness properties of complex concurrent systems, including nonblocking algorithms such as Treiber’s stack and several distributed processes. Many of these examples are beyond the scope of termination analyses that are based on traditional counter abstractions.

Keywords

Inclusion Mapping Fair Termination Nest Level Fairness Constraint Transition Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: LICS, pp. 313–321 (1996)Google Scholar
  2. 2.
    Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. Technical Report TR2012-947, New York University (2012)Google Scholar
  3. 3.
    Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic Counter Abstraction for Concurrent Software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 64–78. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination Proofs for Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Carstensen, H.: Decidability Questions for Fairness in Petri Nets. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 396–407. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  6. 6.
    Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI (2006)Google Scholar
  7. 7.
    Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the Automated Verification of Multithreaded Java Programs. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 173–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Handbook of graph grammars and computing by graph transformation, pp. 247–312. World Scientific Publishing Co., Inc. (1997)Google Scholar
  10. 10.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking algorithms don’t block. In: POPL. ACM (2009)Google Scholar
  12. 12.
    Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes. In: POPL, pp. 239–251. ACM (2009)Google Scholar
  13. 13.
    Haller, P., Sommers, F.: Actors in Scala. Artima (January 2012)Google Scholar
  14. 14.
    Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  15. 15.
    Joshi, S., König, B.: Applying the Graph Minor Theorem to the Verification of Graph Transformation Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 214–226. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Mayr, R.: Undecidable problems in unreliable computations. Theor. Comput. Sci. 297(1-3), 337–354 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Meyer, R.: On Boundedness in Depth in the π-Calculus. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth IFIP International Conference on Theoretical Computer Science–TCS 2008. IFIP, vol. 273, pp. 477–489. Springer, Boston (2008)CrossRefGoogle Scholar
  18. 18.
    Meyer, R., Gorrieri, R.: On the Relationship between π-Calculus and Finite Place/Transition Petri Nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In: PODC (1996)Google Scholar
  20. 20.
  21. 21.
    Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1, ∞ )-Counter Abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 245–259. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Podelski, A., Rybalchenko, A., Wies, T.: Heap Assumptions on Demand. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Treiber, R.: Systems programming: Coping with parallelism. International Business Machines Incorporated, Thomas J. Watson Research Center (1986)Google Scholar
  26. 26.
    Wies, T., Zufferey, D., Henzinger, T.A.: Forward Analysis of Depth-Bounded Processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Zufferey, D., Wies, T., Henzinger, T.A.: Ideal Abstractions for Well-Structured Transition Systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 445–460. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kshitij Bansal
    • 1
  • Eric Koskinen
    • 1
  • Thomas Wies
    • 1
  • Damien Zufferey
    • 2
  1. 1.New York UniversityUSA
  2. 2.IST AustriaAustria

Personalised recommendations