Integer Parameter Synthesis for Timed Automata

  • Aleksandra Jovanović
  • Didier Lime
  • Olivier H. Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7795)


We provide a subclass of parametric timed automata (PTA) that we can actually and efficiently analyze, and we argue that it retains most of the practical usefulness of PTA. The currently most useful known subclass of PTA, L/U automata, has a strong syntactical restriction for practical purposes, and we show that the associated theoretical results are mixed. We therefore advocate for a different restriction scheme: since in classical timed automata, real-valued clocks are always compared to integers for all practical purposes, we also search for parameter values as bounded integers. We show that the problem of the existence of parameter values such that some TCTL property is satisfied is PSPACE-complete. In such a setting, we can also of course synthesize all the values of parameters and we give symbolic algorithms, for reachability and unavoidability properties, to do it efficiently, i.e., without an explicit enumeration. This also has the practical advantage of giving the result as symbolic constraints between the parameters. We finally report on a few experimental results to illustrate the practical usefulness of the approach.


Synthesis Problem Symbolic State Integer Parameter Time Automaton Parameter Valuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information and Computation 104(1), 2–34 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993)Google Scholar
  4. 4.
    André, E., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. In: RP Workshop on Reachability Problems, Liverpool, U.K., vol. 223, pp. 29–46 (2008)Google Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on Soft. Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Methods in System Design 35(2), 121–151 (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bruyère, V., Raskin, J.-F.: Real-time model-checking: Parameters everywhere. Logical Methods in Computer Science 3(1), 1–30 (2007)CrossRefGoogle Scholar
  8. 8.
    Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time preemptive systems. IEEE Trans. on Soft. Eng. 30(2), 97–111 (2004)CrossRefGoogle Scholar
  9. 9.
    Doyen, L.: Robust parametric reachability for timed automata. Information Processing Letters 102(5), 208–213 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer 1, 460–463 (1997)Google Scholar
  11. 11.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inform. and Computation 111(2), 193–244 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. Journal of Logic and Algebraic Programming 52-53, 183–220 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jurdziński, M., Trivedi, A.: Reachability-Time Games on Timed Automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Larsen, K.G., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall (1967)Google Scholar
  18. 18.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. Journal of Universal Computer Science 15(17), 3273–3304 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Virbitskaite, I., Pokozy, E.: Parametric Behaviour Analysis for Time Petri Nets. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 134–140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Wang, F.: Parametric timing analysis for real-time systems. Information and Computation 130(2), 131–150 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aleksandra Jovanović
    • 1
  • Didier Lime
    • 1
  • Olivier H. Roux
    • 1
  1. 1.LUNAM Université. École Centrale de Nantes - IRCCyN UMR CNRS 6597NantesFrance

Personalised recommendations