Skip to main content

Metakaolin

  • Chapter
  • First Online:

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

Abstract

Metakaolin (MK), commercially available since the mid-1990s, is one of the recently developed supplementary cementing materials (SCM) that conforms to ASTM C 618, Class N pozzolan Specifications. Metakaolin differs from other supplementary cementitious materials (SCMs), like fly ash, silica fume, and slag, in that it is not a by-product of an industrial process; it is manufactured for a specific purpose under carefully controlled conditions [1, 2]. This allows manufacturing process of metakaolin to be optimized, ensuring the production of a consistent pozzolanic material. Metakaolin is produced by heating kaolin, one of the most abundant natural clay minerals, to temperatures of 650–900 °C. The Meta prefix in the term is used to denote change. The scientific use of the prefix is used for a combining form denoting the least hydrated of a series. In the case of metakaolin, the change that is taking place is dehydroxylization, brought on by the application of heat over a defined period of time. This heat treatment, or calcinations, serves to break down the structure of kaolin. Bound hydroxyl ions are removed and resulting disorder among alumina and silica layers yields a highly reactive, amorphous material with pozzolanic and latent hydraulic reactivity, suitable for use in cementing applications [3, 4]. The first documented use of MK was in 1962, when it was incorporated in the concrete used in the Jupia Dam in Brazil [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Ramlochan, M. Thomas, K.A. Gruber, The Effect of metakaolin on ALKALI Silica reaction in concrete. Cem. Concr. Res. 30, 339–344 (2000)

    Article  Google Scholar 

  2. J.T. Ding, Z.J. Li, Effects of metakaolin and silica fume on properties of concrete. ACI Mater. J. 99(4), 393–398 (2002)

    Google Scholar 

  3. J. Bensted, P. Barnes, Structure and performance of cements (Spon, New York, 2002), p. 565

    Google Scholar 

  4. J.A. Kostuch, V. Walters, T.R. Jones, High performance concretes incorporating metakaolin: a review. ed. by R.K. Dhir and M.R. Jones. Concrete 2000: Economic and Durable Concrete through Excellence (E&FN Spon, London, 1993), pp. 1799–1811

    Google Scholar 

  5. T.R. Jones, Metakaolin as a pozzolanic addition to concrete. ed. by J. Bensted, P. Barnes. Structure and performance of cements (Spon Press, London, 2001)

    Google Scholar 

  6. W.D. Kingery, D.R. Uhlmann, H.K. Bowen, Introduction to ceramics, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  7. G.W. Brinkley, Ceramic fabrication processes. (Technology Press & Wiley, Cambridge & New York, 1958)

    Google Scholar 

  8. J. Ambroise, M. Murat, J. Pera, Hydration reaction and hardening of calcined clays and related minerals, V Extension of the research and general conclusions. Cem. Concr. Res. 15, 261–268 (1985)

    Article  Google Scholar 

  9. J. Bensted, P. Barnes, Structure and performance of cements, 2nd edn. (Spon Press, New York, 2002)

    Google Scholar 

  10. F. Moodi, A.A. Ramezanianpour, A.Sh. Safavizadeh, Evaluation of the Optimal Process of Thermal Activation of Kaolins (Sientia Iranica, 2011)

    Google Scholar 

  11. S. Salvador, Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products. Cem. Concr. Res. 25(1), 102–112 (1995)

    Article  Google Scholar 

  12. J.M. Justice, Evaluation of Metakaolins for Use as Supplementary Cementitious Materials. MSc Thesis, Georgia institute of technology, Georgia, USA (2005)

    Google Scholar 

  13. S. Salvador, T.W. Davies, Modeling of combined heating and dehydroxylation of kaolinite particles during flash calcination; production of metakolin. Processing Adv. Mater 9, 128–135 (1994)

    Google Scholar 

  14. C. Nita, V.M. John, D.M.R. Cleber, H. Savastano Jr, M.S. Takeashi, Effect of metakaolin on the performance of PVA and cellulose fibers reinforced cement, in Proceedings of the 9th international inorganic-bonded composite materials conference; 2004 October 11–13th, ed. by A.A. Moslemi (University of Idaho, Moscow, 2004), pp. 1–48

    Google Scholar 

  15. B.B. Sabir, S. Wild, j. Bai, Metakaolin and cacined clays as Pozzolans for concrete: a review. Cem Conc Comp 23(6), 441–454 (2001)

    Google Scholar 

  16. R. Siddique, J. Klaus, Influence of metakaolin on the properties of mortar and concrete: a review. Appl. Clay Sci. 43, 392–400 (2009)

    Article  Google Scholar 

  17. A.H. Asbridge, G.V. Walters, T.R. Jones, Ternary blended concretes OPC/GGBFS/Metakaolin (Concrete Across Borders, Denmark, 1994), pp. 547–557

    Google Scholar 

  18. M. Oriol, J. Pera, Pozzolanic activity of metakaolin under microwave treatment. Cem. Concr. Res. 25(2), 265–270 (1995)

    Article  Google Scholar 

  19. M.F. Rojas, J. Cabrera, The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cem. Concr. Res. 32, 133–138 (2002)

    Article  Google Scholar 

  20. C.S. Poon, L. Lam, S.C. Kou, Y.L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res. 31, 1301–1306 (2001)

    Article  Google Scholar 

  21. S. Mindess, F.J. Young, D. Darwin, Concrete, 2nd edn. (Prentice Hall, Upper Saddle River, 2003)

    Google Scholar 

  22. M.A. Caldarone, K.A. Gruber, R.G. Burg, High-reactivity Metakaolin: a new generation mineral admixture. Concr. Int. 16(11), 37–40 (1994)

    Google Scholar 

  23. M.A. Caldarone, K.A. Gruber, High reactivity Metakaolin, a mineral admixture for high-performance concrete, concrete under severe conditions: environment and loading, ed. by K. Sakai, N. Banthia, O.E. Gjorv, Proceedings of the International Conference on Concrete under Severe Conditions, CONSEC 1995, Sapporo, Japan, Aug. 1995, V. 2 (E&FN Spon: Chapman & Hall, New York, 1995), pp. 1015–1024

    Google Scholar 

  24. H.S. Kim, S.H. Lee, H.Y. Moon, Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr. Build. Mater. 21(6), 1229–1237 (2007)

    Article  Google Scholar 

  25. S. Wild, J.M. Khatib, A. Jones, Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 26(10), 1537–1544 (1996)

    Article  Google Scholar 

  26. L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, Durability of mortars modified with metakaolin. Cem. Concr. Res. 33(9), 1473–1479 (2003)

    Article  Google Scholar 

  27. J.J. Brooks, M.A.M. Johari, M. Mazloom, Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(1), 293–301 (2000)

    Article  Google Scholar 

  28. G. Batis, P. Pantazopoulou, S. Tsivilis, E. Badogiannis, The effect of metakaolin on the corrosion behavior of cement mortars. Cem Conc Comp in press (2004)

    Google Scholar 

  29. E. Moulin, P. Blanc, D. Sorrentino, Influence of key cement chemical parameters on the properties of metakaolin blended cements. Cem. Concr. Compos. 23(6), 463–469 (2001)

    Article  Google Scholar 

  30. M. Shekarchi, A. Bonakdar, M. Bakhshi, A. Mirdamadi, B. Mobasher, Transport properties in metakaolin blended concrete. Constr. Build. Mater. 24(11), 2217–2223 (2010)

    Article  Google Scholar 

  31. S. Wild, J.M. Khatib, Portlandite consumption in metakaolin cement pastes and mortars. Cem. Concr. Res. 27, 137–146 (1997)

    Article  Google Scholar 

  32. D.P. Bentz, E.J. Garboczi, Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone. ACI Mater J 88(5), 518–529 (1991)

    Google Scholar 

  33. E. Gu¨neyisi, M. Gesog˘lu, K. Mermerdas, Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater Struct 41(5), 937–949 (2008)

    Google Scholar 

  34. J.M. Khatib, Metakaolin concrete at a low water to binder ratio. Constr. Build. Mat. 22, 1691–1700 (2008)

    Article  Google Scholar 

  35. E. Vejmelkova, M. Pavlikova, M. Keppert, Z. Keršner, P. Rovnanikova, M. Ondracek, M. Sedlmajer, R. Cerny, High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mat. 24(8), 1404–1411 (2010)

    Google Scholar 

  36. B.B. Sabir, The effects of curing temperature and water/binder ratio on the strength of metakaolin concrete, in Sixth CANMET/ACI International Conference on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Supplementary volume. Bangkok, Thailand, pp. 493–506 (1998)

    Google Scholar 

  37. X. Qian, Z. Li, The relationships between stress and strain for high-performance concrete with metakaolin. Cem. Concr. Res. 31, 1607–1611 (2001)

    Article  Google Scholar 

  38. J.M. Justice, K.E. Kurtis, Influence of metakaolin surface area on properties of cement-based materials. J. Mater. civil ASCE/September2007

    Google Scholar 

  39. J.J. Brooks, M.A.M. Johari, Effect of metakaolin on creep and shrinkage of concrete. Cement Concr. Compos. 23(6), 495–502 (2001)

    Article  Google Scholar 

  40. S. Wild, J. Khatib, L.J. Roose, Chemical and autogenous shrinkage of Portland cement-metakaolin pastes. Adv. Cem. Res. 10(3), 109–119 (1998)

    Google Scholar 

  41. C.S. Poon, S.C. Kou, L. Lam, Pore size distribution of high performance metakaolin concrete. J. Wuhan Univ Technol. Mat. Sci. Edn. 17(1), 42–46 (2002)

    Article  Google Scholar 

  42. J. Ambroise, S. Maximilien, J. Pera, Properties of metakaolin blended cements. Adv. Cem. Based Mater. 1(4), 161–168 (1994)

    Article  Google Scholar 

  43. M. Frías, J. Cabrera, Pore size distribution and degree of hydration of metakaolin-cement pastes. Cem. Concr. Res. 30(4), 561–569 (2000)

    Article  Google Scholar 

  44. J.M. Khatib, S. Wild, Pore size distribution of metakaolin paste. Cem. Concr. Res. 26(10), 1545–1553 (1996)

    Article  Google Scholar 

  45. J.P. Skanly, Materials science of concrete, I (American Ceramic Society Inc., Westerville, 1989)

    Google Scholar 

  46. N.J. Coleman, C.L. Page, Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem. Concr. Res. 27, 147–154 (1997)

    Article  Google Scholar 

  47. E. Badogiannis, S. Tsivilis, Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cement Concr. Compos. 31(2), 128–133 (2009)

    Article  Google Scholar 

  48. P.K. Mehta, J.M. Monteiro, Effect of aggregate, cement and mineral admixtures on the microstructure of the transition zone, ed. by S. Mindess, P.S. Shah, Bonding in cementitious composites. Materials Research Society, Pittsburgh pp. 65–75 (1987)

    Google Scholar 

  49. P. Bredy, M. Chabannet, J. Pera, Microstructure and porosity of metakaolin blended cements. Proc. Mater. Res. Soc. Symp. 137, 431–436 (1989)

    Article  Google Scholar 

  50. J. Bai, S. Wild, B.B. Sabir, Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth. Cem. Concr. Res. 32, 1813–1821 (2002)

    Article  Google Scholar 

  51. H.E.H. Seleem, A.M. Rashad, B.A. El-Sabbagh, Durability and strength evaluation of high-performance concrete in marine structures. Constr. Build. Mater. 24(6), 878–884 (2010)

    Article  Google Scholar 

  52. C.S. Poon, S.C. Kou, L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mat. 20(10), 858–865 (2006)

    Article  Google Scholar 

  53. K.A. Gruber, T. Ramlochan, A. Boddy, R.D. Hooton, M.D.A. Thomas, Increasing concrete durability with high-reactivity metakaolin. Cem. Conc. Comp. 23(6), 479–484 (2001)

    Google Scholar 

  54. A.H. Asbridge, C.L. Page, M.M. Page, Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars. Cem. Concr. Res. 32(9), 1365–1369 (2002)

    Article  Google Scholar 

  55. A. Boddy, R.D. Hooton, K.A. Gruber, Long-term testing of the chloride penetration resistance of concrete containing high-reactivity metakaolin. Cem. Concr. Res. 31(5), 759–765 (2001)

    Article  Google Scholar 

  56. R.D. Hooton, Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity. ACI Mater. J. 90(2), 143–151 (1993)

    Google Scholar 

  57. P.K. Mehta, Mechanics of sulfate attack on Portland cement concrete another look. Cem. Concr. Res. 13(3), 401–406 (1983)

    Article  Google Scholar 

  58. P.J. Tumidajski, G.W. Chan, K.E. Philipose, An effective diffusivity for sulfate transport into concrete. Cem. Concr. Res. 25(6), 1159–1163 (1995)

    Article  Google Scholar 

  59. K.E. Kurtis, P.J.M. Monteiro, S.M. Madanat, Empirical models to predict concrete expansion caused by sulfate attack. ACI Mater. J. 97(2), 156–162 (2000)

    Google Scholar 

  60. Nabil M. Al-Akhras, Durability of metakaolin concrete to sulfate attack. Cem. Concr. Res. 36, 1727–1734 (2006)

    Article  Google Scholar 

  61. J.M. Khatib, S. Wild, Sulphate resistance of metakaolin mortar. Cem. Concr. Res. 28(1), 83–92 (1998)

    Article  Google Scholar 

  62. A.M. Neville, Properties of concrete, 4th edn. (Addison Wesley Longman Limited, London, 1995)

    Google Scholar 

  63. B. Tian, M.D. Cohen, Does gypsum formation during sulfate attack on concrete lead to expansion Cem. Concr. Res. 30(1), 117–123 (2000)

    Article  Google Scholar 

  64. S.T. Lee, H.Y. Moon, R.D. Hooton, J.P. Kim, Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions. Cem. Concr. Res. 35, 1314–1323 (2005)

    Article  Google Scholar 

  65. W. Aquino, D.A. Lange, J. Olek, The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products. Cem. Concr. Compos. 23(6), 485–493 (2001)

    Article  Google Scholar 

  66. T. Ramlochan, M. Thomas, K.A. Gruber, The effect of metakaolin on alkali-silica reaction in concrete. Cem. Concr. Res. 30(3), 339–344 (2000)

    Article  Google Scholar 

  67. C. Girodet, M. Chabannet, J.L. Bosc, J. Pera, Influence of the type of cement on the freeze-thaw resistance of the nortar phase of concrete, ed. by M.J. Setzer, R. Auberg, Proceedings of the International RILEM Workshop on the Frost Resistance of Concrete. (E & FN Spon, London, 1997) pp 31–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ramezanianpour .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramezanianpour, A.A. (2014). Metakaolin. In: Cement Replacement Materials. Springer Geochemistry/Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36721-2_5

Download citation

Publish with us

Policies and ethics