A Geometric Procedure with Prover9

  • Ranganathan Padmanabhan
  • Robert Veroff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7788)

Abstract

Here we give an automated proof of the fact that a cubic curve admits at most one group law. This is achieved by proving the tight connection between the chord-tangent law of composition and any potential group law (as a morphism) on the curve. An automated proof of this is accomplished by implementing the rigidity lemma and the Cayley-Bacharach theorem of algebraic geometry as formal inference rules in Prover9, a first-order theorem prover developed by Dr. William McCune.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knapp, A.: Elliptic Curves. Princeton University Press (1992)Google Scholar
  2. 2.
    McCune, W.: Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, Argonne National Laboratory, Argonne, IL (1994), http://www.mcs.anl.gov/AR/otter/
  3. 3.
    McCune, W.: Prover9, version 2009-02A, http://www.cs.unm.edu/~mccune/prover9/
  4. 4.
    Mumford, D.: Abelian varieties. Tata Institute of Fundamental Research. Studies in Mathematics, vol. 5. Oxford University Press, London (1970)MATHGoogle Scholar
  5. 5.
    Padmanabhan, R.: Logic of equality in geometry. Discrete Mathematics 15, 319–331 (1982)MathSciNetMATHGoogle Scholar
  6. 6.
    Padmanabhan, R., McCune, W.: Automated reasoning about cubic curves. Computers and Mathematics with Applications 29(2), 17–26 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Padmanabhan, R., McCune, W.: Uniqueness of Steiner laws on cubic curves. Beiträge Algebra Geom. 47(2), 543–557 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Padmanabhan, R., Veroff, R.: A geometric procedure with Prover9 (Web support) (2012), http://www.cs.unm.edu/~veroff/gL_Paper/
  9. 9.
    Padmanabhan, R., Veroff, R.: A gL clause generator (2012), http://www.cs.unm.edu/~veroff/gL_Paper/gL_gen.html
  10. 10.
    Silverman, J., Tate, J.: Rational Points on Elliptic Curves. Springer (1992)Google Scholar
  11. 11.
    Veroff, R.: Solving open questions and other challenge problems using proof sketches. J. Automated Reasoning 27, 157–174 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ranganathan Padmanabhan
    • 1
  • Robert Veroff
    • 2
  1. 1.University of ManitobaWinnipegCanada
  2. 2.University of New MexicoAlbuquerqueUSA

Personalised recommendations