Theorem Proving in Large Formal Mathematics as an Emerging AI Field

  • Josef Urban
  • Jiří Vyskočil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7788)


In the recent years, we have linked a large corpus of formal mathematics with automated theorem proving (ATP) tools, and started to develop combined AI/ATP systems working in this setting. In this paper we first relate this project to the earlier large-scale automated developments done by Quaife with McCune’s Otter system, and to the discussions of the QED project about formalizing a significant part of mathematics. Then we summarize our adventure so far, argue that the QED dreams were right in anticipating the creation of a very interesting semantic AI field, and discuss its further research directions.


Theorem Prove Automate Reasoning Proof Assistant Automate Theorem Prove Large Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The QED Manifesto. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 238–251. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Alama, J., Kühlwein, D., Tsivtsivadze, E., Urban, J., Heskes, T.: Premise selection for mathematics by corpus analysis and kernel methods. CoRR, abs/1108.3446 (2011)Google Scholar
  3. 3.
    Alama, J., Kühlwein, D., Urban, J.: Automated and Human Proofs in General Mathematics: An Initial Comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bancerek, G., Endou, N., Sakai, Y.: On the characterizations of compactness. Formalized Mathematics 9(4), 733–738 (2001)Google Scholar
  6. 6.
    Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)Google Scholar
  8. 8.
    Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning 47(2), 161–189 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brown, C.E.: Satallax: An Automatic Higher-Order Prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report UIUC-DCS-R-99-210, University of Illinois at Urbana-Champaign (1999)Google Scholar
  11. 11.
    Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  12. 12.
    Dahn, I., Wernhard, C.: First order proof problems extracted from an article in the MIZAR Mathematical Library. In: Bonacina, M.P., Furbach, U. (eds.) Int. Workshop on First-Order Theorem Proving (FTP 1997). RISC-Linz Report Series No. 97-50, vol. (97-50), pp. 58–62. Johannes Kepler Universität, Linz, Austria (1997)Google Scholar
  13. 13.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hähnle, R., Kerber, M., Weidenbach, C.: Common Syntax of the DFG-Schwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für Informatik, Universät Karlsruhe, Karlsruhe, Germany (1996)Google Scholar
  15. 15.
    Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs. Dagstuhl Seminar Proceedings, vol. 05021, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2005)Google Scholar
  16. 16.
    Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Jaskowski, S.: On the rules of suppositions. Studia Logica, 1 (1934)Google Scholar
  18. 18.
    Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Matuszewski, R., Rudnicki, P.: Mizar: the first 30 years. Mechanized Mathematics and Its Applications 4, 3–24 (2005)Google Scholar
  20. 20.
    McCune, W.W.: LADR: Library of Automated Deduction Routines,
  21. 21.
    McCune, W.W.: Mace4 Reference Manual and Guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory, Argonne, USA (2003)Google Scholar
  22. 22.
    McCune, W.W.: Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne National Laboratory, Argonne, USA (2003)Google Scholar
  23. 23.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS 2001: Proceedings of the International Conference on Formal Ontology in Information Systems, pp. 2–9. ACM Press, New York (2001)CrossRefGoogle Scholar
  25. 25.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  26. 26.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning, vol. I, pp. 335–367. Elsevier and MIT Press (2001)Google Scholar
  27. 27.
    Otten, J., Bibel, W.: leanCoP: Lean Connection-Based Theorem Proving. Journal of Symbolic Computation 36(1-2), 139–161 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR, vol. 192, pp. 18–33 (2006)Google Scholar
  29. 29.
    Quaife, A.: Automated Deduction in von Neumann-Bernays-Godel Set Theory. Journal of Automated Reasoning 8(1), 91–147 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Academic Publishers (1992)Google Scholar
  31. 31.
    Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Expressiveness and Efficiency in a Common Sense Knowledge Base. In: Shvaiko, P. (ed.) Proceedings of the Workshop on Contexts and Ontologies: Theory, Practice and Applications (2005)Google Scholar
  32. 32.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  33. 33.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  34. 34.
    Sutcliffe, G.: Semantic Derivation Verification. International Journal on Artificial Intelligence Tools 15(6), 1053–1070 (2006)CrossRefGoogle Scholar
  35. 35.
    Sutcliffe, G., Puzis, Y.: SRASS - A Semantic Relevance Axiom Selection System. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Sutcliffe, G.: The 4th IJCAR automated theorem proving system competition - CASC-J4. AI Commun. 22(1), 59–72 (2009)MathSciNetGoogle Scholar
  37. 37.
    Sutcliffe, G.: The TPTP World – Infrastructure for Automated Reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Urban, J.: Translating Mizar for First Order Theorem Provers. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  39. 39.
    Urban, J.: MPTP - Motivation, Implementation, First Experiments. Journal of Automated Reasoning 33(3-4), 319–339 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Urban, J.: MaLARea: a Metasystem for Automated Reasoning in Large Theories. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, pp. 45–58 (2007)Google Scholar
  42. 42.
    Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal of Automated Reasoning 37(1-2), 21–43 (2007)CrossRefzbMATHGoogle Scholar
  43. 43.
    Urban, J., Sutcliffe, G.: ATP Cross-Verification of the Mizar MPTP Challenge Problems. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 546–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  44. 44.
    Urban, J., Trac, S., Sutcliffe, G., Puzis, Y.: Combining Mizar and TPTP Semantic Presentation Tools. In: Proceedings of the Mathematical User-Interfaces Workshop 2007 (2007)Google Scholar
  45. 45.
    Urban, J.: An overview of methods for large-theory automated theorem proving (invited paper). In: Höfner, A., McIver, G. (eds.) ATE Workshop. CEUR Workshop Proceedings, vol. 760, pp. 3–8. (2011)Google Scholar
  46. 46.
    Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A Wiki for Mizar: Motivation, Considerations, and Initial Prototype. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 455–469. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  47. 47.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and Presentation Service for Mizar Formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. 49.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP Machine Learning Connection Prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  50. 50.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  51. 51.
    Wiedijk, F.: CHECKER - notes on the basic inference step in Mizar (2000),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Josef Urban
    • 1
  • Jiří Vyskočil
    • 2
  1. 1.Radboud University NijmegenThe Netherlands
  2. 2.Czech Technical UniversityCzech Republic

Personalised recommendations