Skip to main content

Proposing a Model for Studying Primate Development Using Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Book cover Programmed Cells from Basic Neuroscience to Therapy

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE,volume 20))

Abstract

New genomic tools provide us with high-resolution information about the alterations that may have resulted in the evolution of our own species. However, all information available to date for comparative studies between humans and our closest relatives, the non-human primates (NHP), comes from DNA/RNA samples extracted from preserved (post-mortem) tissues. These samples do not always fairly represent the distinctive traits of live cell development; nor do they represent cell behavior. Ideally, the identification of differences in genetic makeup between related species should be translated into phenotypical divergence. In this chapter, we will discuss the idea of developing and characterizing induced pluripotent stem cells (iPSC) from our closest relatives apes, such as bonobos, chimpanzees and gorillas. We then will discuss experimental protocols that will allow us to compare developing live neurons from humans to those from NHP and will suggest how to interpret possible outcomes in light of differences that have been previously involved in human speciation, such as brain size and differential gene expression. Such a culture model could provide new insights into human adaptation, with potential consequences for biomedical research and the basic biology of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, Wang YC, Charter SJ, Laurent LC, Ryder OA, Loring JF (2011) Induced pluripotent stem cells from highly endangered species. Nat Methods 8:829–831

    Article  PubMed  Google Scholar 

  • Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 32:483–491

    Article  PubMed  CAS  Google Scholar 

  • Caceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035

    Article  PubMed  CAS  Google Scholar 

  • Cholfin JA, Rubenstein JL (2007) Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 104:7652–7657

    Article  PubMed  CAS  Google Scholar 

  • Enard W, Khaitovich P, Klose J, Zollner S, Heissig F, Giavalisco P, Nieselt-Struwe K, Muchmore E, Varki A, Ravid R, Doxiadis GM, Bontrop RE, Pääbo S (2002) Intra- and interspecific variation in primate gene expression patterns. Science 296:340–343

    Article  PubMed  CAS  Google Scholar 

  • Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91:11373–11377

    Article  PubMed  CAS  Google Scholar 

  • Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106:10993–10998

    Article  PubMed  CAS  Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308:242–245

    Article  PubMed  CAS  Google Scholar 

  • Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:9382–9386

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359

    Article  PubMed  CAS  Google Scholar 

  • Hill RS, Walsh CA (2005) Molecular insights into human brain evolution. Nature 437:64–67

    Article  PubMed  CAS  Google Scholar 

  • Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang SC (2011) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis 10. Doi: org/10.1016/j.jstrokecerebrovasdis.2011.09.008 (Pub ahead of print)

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    PubMed  CAS  Google Scholar 

  • Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4:16–19

    Article  PubMed  Google Scholar 

  • Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H, Xiao L (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K, Qu X, Xiang T, Lu D, Chi X, Gao G, Ji W, Ding M, Deng H (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewicz A, Cortay V, Giroud P, Berland M, Smart I, Kennedy H, Dehay C (2006) The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb Cortex 16(Suppl 1):i26–i34

    Article  PubMed  Google Scholar 

  • Marvanova M, Menager J, Bezard E, Bontrop RE, Pradier L, Wong G (2003) Microarray analysis of nonhuman primates: validation of experimental models in neurological disorders. FASEB J 17:929–931

    PubMed  CAS  Google Scholar 

  • Muotri AR (2009) Modeling epilepsy with pluripotent human cells. Epilepsy Behav 14(Suppl 1):81–85

    Article  PubMed  Google Scholar 

  • Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH (2005) Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci USA 102:18644–18648

    Article  PubMed  CAS  Google Scholar 

  • Novembre FJ, Saucier M, Anderson DC, Klumpp SA, O’Neil SP, Brown CR 2nd, Hart CE, Guenthner PC, Swenson RB, McClure HM (1997) Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J Virol 71:4086–4091

    PubMed  CAS  Google Scholar 

  • O’Leary DD, Borngasser D (2006) Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. Cereb Cortex 16(Suppl 1):i46–i56

    Article  PubMed  Google Scholar 

  • Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103:17973–17978

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    Article  PubMed  CAS  Google Scholar 

  • Schenker NM, Desgouttes AM, Semendeferi K (2005) Neural connectivity and cortical substrates of cognition in hominoids. J Human Evol 49:547–569

    Article  Google Scholar 

  • Seibold HR, Wolf RH (1973) Neoplasms and proliferative lesions in 1065 nonhuman primate necropsies. Lab Anim Sci 23:533–539

    PubMed  CAS  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Meth 2:599–605

    Article  CAS  Google Scholar 

  • The Chimp Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  Google Scholar 

  • Thomson JA, Marshall VS (1998) Primate embryonic stem cells. Curr Top Dev Biol 38:133–165

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Travis K, Ford K, Jacobs B (2005) Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci 27:277–287

    Article  PubMed  CAS  Google Scholar 

  • Uddin M, Wildman DE, Liu G, Xu W, Johnson RM, Hof PR, Kapatos G, Grossman LI, Goodman M (2004) Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc Natl Acad Sci USA 101:2957–2962

    Article  PubMed  CAS  Google Scholar 

  • Varki A (2000) A chimpanzee genome project is a biomedical imperative. Genome Res 10:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Altheide TK (2005) Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15:1746–1758

    Article  PubMed  CAS  Google Scholar 

  • Wissner-Gross ZD, Scott MA, Ku D, Ramaswamy P, Fatih Yanik M (2011) Large-scale analysis of neurite growth dynamics on micropatterned substrates. Integr Biol (Camb) 3:65–74

    Article  CAS  Google Scholar 

  • Wood B, Collard M (1999) The human genus. Science 284:65–71

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alysson R. Muotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchetto, M.C.N., Muotri, A.R., Gage, F.H. (2013). Proposing a Model for Studying Primate Development Using Induced Pluripotent Stem Cells. In: Gage, F., Christen, Y. (eds) Programmed Cells from Basic Neuroscience to Therapy. Research and Perspectives in Neurosciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36648-2_4

Download citation

Publish with us

Policies and ethics