On the Search for Reliable Human Aging Models: Understanding Aging by Nuclear Reprogramming

  • Ignacio Sancho-Martinez
  • Emmanuel Nivet
  • Juan Carlos Izpisua Belmonte
Chapter

Abstract

Reprogramming technologies, and particularly the generation of induced pluripotent stem cells (iPSCs), have demonstrated the possibility of personalized disease modeling in a dish. Importantly, the fact that pluripotent stem cells can give rise to all cell types of an organism, along with the technical progress allowing for their isolation, brings to mind fantasies like the fountain of youth and eternal regeneration and represents one of the most promising scientific fields with clinical implications. Furthermore, increasing evidence indicates that aging “defects” observed in patient somatic cells could be erased or alleviated by direct reprogramming towards pluripotency and rapidly recapitulated upon directed differentiation to specific cell lineages (Liu et al., Nature 472:221–225, 2011a). Thus, iPSC models of aging facilitate human aging studies by shortening the time required for physiological manifestation of aging-related defects from years, in the case of a human being, to days when stem cell models are applied. Moreover, the combination of gene-editing and iPSC models of aging will also allow for the generation of precisely targeted reporter cell lines of high value for studying normal differentiation processes and high throughput screens. However, a major concern regarding the use of iPSCs for disease modeling has to be taken into account prior to their broad application in drug discovery studies, which is that the use of patient-derived iPSCs bears another important experimental limitation, the lack of appropriate genetically matched control lines (Soldner et al., Cell 146:318–331, 2011; Liu et al., Cell Stem Cell 8:688–694, 2011b).

In this chapter we will discuss the most recent advancements in the use of pluripotent stem cells as models of disease with special emphasis on their use, alongside gene editing, for the study of human aging and its associated pathologies.

References

  1. Alwan A, Maclean DR, Riley LM, d’Espaignet ET, Mathers CD, Stevens GA, Bettcher D (2010) Monitoring and surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. Lancet 376:1861–1868PubMedCrossRefGoogle Scholar
  2. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388PubMedCrossRefGoogle Scholar
  3. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225PubMedCrossRefGoogle Scholar
  4. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  5. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121:2833–2844PubMedCrossRefGoogle Scholar
  6. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl Acids Res 39:e82PubMedCrossRefGoogle Scholar
  7. Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG, Anderson SA, Stewart CL, Jeang KT (2012) Accumulation of the inner nuclear envelope protein sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149:565–577PubMedCrossRefGoogle Scholar
  8. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221PubMedCrossRefGoogle Scholar
  9. Hinkal GW, Gatza CE, Parikh N, Donehower LA (2009) Altered senescence, apoptosis, and DNA damage response in a mutant p53 model of accelerated aging. Mech Ageing Dev 130:262–271PubMedCrossRefGoogle Scholar
  10. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnol 27:851–857CrossRefGoogle Scholar
  11. Howden SE, Gore A, Li Z, Fung HL, Nisler BS, Nie J, Chen G, McIntosh BE, Gulbranson DR, Diol NR, Taapken SM, Vereide DT, Montgomery KD, Zhang K, Gamm DM, Thomson JA (2011) Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc Natl Acad Sci USA 108(16):6537–6542PubMedCrossRefGoogle Scholar
  12. Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10PubMedCrossRefGoogle Scholar
  13. Jin K (2010) Modern biological theories of aging. Aging Dis 1:72–74PubMedGoogle Scholar
  14. Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16:1210–1214PubMedCrossRefGoogle Scholar
  15. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419PubMedCrossRefGoogle Scholar
  16. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221PubMedCrossRefGoogle Scholar
  17. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225PubMedCrossRefGoogle Scholar
  18. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD, Dubova I, Goebl A, Plongthongkum N, Fung HL, Zhang K, Loring JF, Laurent LC, Izpisua Belmonte JC (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8:688–694PubMedCrossRefGoogle Scholar
  19. Liu GH, Sancho-Martinez I, Izpisua Belmonte JC (2012) Cut and paste: restoring cellular function by gene-correction. Cell Res 22:283–284PubMedCrossRefGoogle Scholar
  20. Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451:716–719PubMedCrossRefGoogle Scholar
  21. Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539PubMedCrossRefGoogle Scholar
  22. Misteli T (2011) HGPS-derived iPSCs for the ages. Cell Stem Cell 8:4–6PubMedCrossRefGoogle Scholar
  23. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638PubMedCrossRefGoogle Scholar
  24. Murga M, Bunting S, Montaña MF, Soria R, Mulero F, Cañamero M, Lee Y, McKinnon PJ, Nussenzweig A, Fernandez-Capetillo O (2009) A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 41:891–898PubMedCrossRefGoogle Scholar
  25. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555PubMedCrossRefGoogle Scholar
  26. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nature Biotechnol 29:73–78CrossRefGoogle Scholar
  27. Partridge L, Thornton J, Bates G (2011) The new science of ageing. Philos Trans R Soc Lond B Biol Sci 366:6–8PubMedCrossRefGoogle Scholar
  28. Sancho-Martinez I, Nivet E, Izpisua Belmonte JC (2011) The labyrinth of nuclear reprogramming. J Mol Cell Biol 3:327–329PubMedCrossRefGoogle Scholar
  29. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063PubMedCrossRefGoogle Scholar
  30. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459PubMedCrossRefGoogle Scholar
  31. Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331PubMedCrossRefGoogle Scholar
  32. Suzuki K, Mitsui K, Aizawa E, Hasegawa K, Kawase E, Yamagishi T, Shimizu Y, Suemori H, Nakatsuji N, Mitani K (2008) Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci USA 105:13781–13786PubMedCrossRefGoogle Scholar
  33. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  34. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  35. Tiscornia G, Vivas EL, Belmonte JC (2011) Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 17:1570–1576PubMedCrossRefGoogle Scholar
  36. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6:407–411PubMedCrossRefGoogle Scholar
  37. Vig J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1075CrossRefGoogle Scholar
  38. Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nature Biotechnol 21:447–451CrossRefGoogle Scholar
  39. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121PubMedCrossRefGoogle Scholar
  40. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ignacio Sancho-Martinez
    • 1
  • Emmanuel Nivet
    • 1
  • Juan Carlos Izpisua Belmonte
    • 1
    • 2
  1. 1.Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaUSA
  2. 2.Center for Regenerative Medicine in BarcelonaBarcelonaSpain

Personalised recommendations