Advertisement

A Formal Approach to Modelling and Verifying Resource-Bounded Context-Aware Agents

  • Abdur Rakib
  • Rokan Uddin Faruqui
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 109)

Abstract

There has been a move of context-aware systems into safety-critical domains including healthcare, emergency scenarios, and disaster recovery. These systems are often distributed and deployed on resource-bounded devices. Therefore, developing formal techniques for modelling and designing context-aware systems, verifying requirements and ensuring functional correctness are major challenges. We present a framework for the formal representation and verification of resource-bounded context-aware systems. We give ontological representation of contexts, translate ontologies to a set of Horn clause rules, based on these rules we build multi-agent context-aware systems and encode them into Maude specification, we then verify interesting properties of such systems using the Maude LTL model checker.

Keywords

Pervasive computing Context-awareness Multi-agent systems Ontology Model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: The computer for the 21st century. ACM SIGMOBILE Mobile Computing and Communications Review - Special Issue Dedicated to Mark Weiser 3(3), 3–11 (1999)CrossRefGoogle Scholar
  2. 2.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: PerCom Workshops 2004, pp. 18–22 (2004)Google Scholar
  3. 3.
    Ejigu, D., Scuturici, M., Brunie, L.: An ontology-based approach to context modeling and reasoning in pervasive computing. In: PerCom Workshops 2007, pp. 14–19 (2007)Google Scholar
  4. 4.
    Keßler, C., Raubal, M., Wosniok, C.: Semantic Rules for Context-Aware Geographical Information Retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L., Colella, R., DiBari, A.: A Framework for Context-Aware Home-Health Monitoring. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 119–130. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker and Its Implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 230–234. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  8. 8.
    Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applications. PhD thesis, The University of Queensland (2003)Google Scholar
  9. 9.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)CrossRefGoogle Scholar
  10. 10.
    Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition - Special issue: Current issues in knowledge modeling 5(2), 199–220 (1993)CrossRefGoogle Scholar
  11. 11.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: WWW 2003, pp. 48–57. ACM Press (2003)Google Scholar
  12. 12.
    Rinner, C.: Multi-criteria evaluation in support of emergency response decision-making. In: Joint CIG/ISPRS Conference on Geomatics for Disaster and Risk Management (2007)Google Scholar
  13. 13.
    Baumgartner, N., Retschitzegger, W.: A survey of upper ontologies for situation awareness. In: Proceedings of the 4th IASTED International Conference on Knowledge Sharing and Collaborative Engineering, pp. 1–9 (2006)Google Scholar
  14. 14.
    Protégé: The Protégé ontology editor and knowledge-base framework (Version 4.1) (July 2011), http://protege.stanford.edu/
  15. 15.
    Rakib, A., Faruqui, R.U., MacCaull, W.: Verifying Resource Requirements for Ontology-Driven Rule-Based Agents. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 312–331. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying Time and Communication Costs of Rule-Based Reasoners. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 1–14. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Culbert, C.: CLIPS reference manual. NASA (2007)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Abdur Rakib
    • 1
  • Rokan Uddin Faruqui
    • 2
  1. 1.School of Computer ScienceUniversity of NottinghamMalaysia
  2. 2.Department of Computer Science and EngineeringUniversity of ChittagongBangladesh

Personalised recommendations