Skip to main content

Randomness and Sparsity Induced Codebook Learning with Application to Cancer Image Classification

  • Conference paper
  • 1606 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Abstract

Codebook learning is one of the central research topics in computer vision and machine learning. In this paper, we propose a new codebook learning algorithm, Randomized Forest Sparse Coding (RFSC), by harvesting the following three concepts: (1) ensemble learning, (2) divide-and-conquer, and (3) sparse coding. Given a set of training data, a randomized tree can be used to perform data partition (divide-and-conquer); after a tree is built, a number of bases are learned from the data within each leaf node for a sparse representation (subspace learning via sparse coding); multiple trees with diversities are trained (ensemble), and the collection of bases of these trees constitute the codebook. These three concepts in our codebook learning algorithm have the same target but with different emphasis: subspace learning via sparse coding makes a compact representation, and reduces the information loss; the divide-and-conquer process efficiently obtains the local data clusters; an ensemble of diverse trees provides additional robustness. We have conducted classification experiments on cancer images as well as a variety of natural image datasets and the experiment results demonstrate the efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assouad, P.: Plongements lipschitziens dans rn. Bull. Soc. Math. France (4), 429–448 (1983)

    MathSciNet  Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52(2), 5406–5425 (2005)

    Article  Google Scholar 

  5. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: ICML, pp. 96–103 (2008)

    Google Scholar 

  6. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: ICML, pp. 161–168 (2006)

    Google Scholar 

  7. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds. In: STOC, pp. 537–546 (2008)

    Google Scholar 

  8. Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L., Allan, M., Bishop, C.M., Chapelle, O., Dalal, N., Deselaers, T., Dorkó, G., Duffner, S., Eichhorn, J., Farquhar, J.D.R., Fritz, M., Garcia, C., Griffiths, T., Jurie, F., Keysers, D., Koskela, M., Laaksonen, J., Larlus, D., Leibe, B., Meng, H., Ney, H., Schiele, B., Schmid, C., Seemann, E., Shawe-Taylor, J., Storkey, A.J., Szedmak, S., Triggs, B., Ulusoy, I., Viitaniemi, V., Zhang, J.: The 2005 PASCAL Visual Object Classes Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 117–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Ferrari, V., Jurie, F., Schmid, C.: Accurate Object Detection with Deformable Shape Models Learnt from Images. In: CVPR (2007)

    Google Scholar 

  10. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: NIPS, vol. 20 (2007)

    Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. of Comp. and Sys. Sci. 55(1) (1997)

    Google Scholar 

  12. Friedma, J., Hastie, T., Hofling, H., Tibshirani, R.: Pathwise Coordinate Optimization. The Annals of Applied Stat. (2007)

    Google Scholar 

  13. Gao, S., Tsang, I.W.H., Chia, L.T., Zhao, P.: Local features are not lonely - laplacian sparse coding for image classification. In: CVPR (2010)

    Google Scholar 

  14. June, P.G., Ernst, D., Wehenkel, L.: Extremely Randomized Trees. In: Machine Learning, vol. 36 (2003)

    Google Scholar 

  15. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  16. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS (2007)

    Google Scholar 

  17. Li, Y., Osher, S.: Coordinate descent optimization for ℓ1 minimization with application to compressed sensing; a greedy algorithm. CAM Report (2009)

    Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. on PAMI (to appear)

    Google Scholar 

  20. Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image classification. IEEE Trans. on PAMI 30(9), 1632–1646 (2008)

    Article  Google Scholar 

  21. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  22. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic Object Recognition with Boosting. IEEE Trans. on PAMI 28(3), 416–431 (2006)

    Article  Google Scholar 

  23. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986)

    Google Scholar 

  24. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)

    Google Scholar 

  25. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B. 56(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  26. Turk, M.: Eigenface for recognition. Journal of Cognitive Neuroscience (1991)

    Google Scholar 

  27. Vedaldi, A., Fulkerson, B.: Vlfeat: an open and portable library of computer vision algorithms. In: ACM Multimedia, pp. 1469–1472 (2010)

    Google Scholar 

  28. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)

    Google Scholar 

  29. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on PAMI 31(2) (2009)

    Google Scholar 

  30. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Q., Yao, C., Wang, L., Tu, Z. (2013). Randomness and Sparsity Induced Codebook Learning with Application to Cancer Image Classification. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics